Robust Wavelet Transform Neural-Network-Based Short-Term Load Forecasting for Power Distribution Networks

自回归积分移动平均 希尔伯特-黄变换 人工神经网络 计算机科学 时域 小波变换 频域 自回归模型 小波 需求预测 时间序列 数据挖掘 能量(信号处理) 人工智能 工程类 计量经济学 机器学习 统计 数学 运筹学 计算机视觉
作者
Yijun Wang,Peiqian Guo,Nan Ma,Guowei Liu
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (1): 296-296
标识
DOI:10.3390/su15010296
摘要

A precise short-term load-forecasting model is vital for energy companies to create accurate supply plans to reduce carbon dioxide production, causing our lives to be more environmentally friendly. A variety of high-voltage-level load-forecasting approaches, such as linear regression (LR), autoregressive integrated moving average (ARIMA), and artificial neural network (ANN) models, have been proposed in recent decades. However, unlike load forecasting in high-voltage transmission systems, load forecasting at the distribution network level is more challenging since distribution networks are more variable and nonstationary. Moreover, existing load-forecasting models only consider the features of the time domain, while the demand load is highly correlated to the frequency-domain information. This paper introduces a robust wavelet transform neural network load-forecasting model. The proposed model utilizes both time- and frequency-domain information to improve the model’s prediction accuracy. Firstly, three wavelet transform methods, variational mode decomposition (VMD), empirical mode decomposition (EMD), and empirical wavelet transformation (EWT), were introduced to transform the time-domain demand load data into frequency-domain data. Then, neural network models were trained to predict all components simultaneously. Finally, all the predicted data were aggregated to form the predicted demand load. Three cases were simulated in the case study stage to evaluate the prediction accuracy under different layer numbers, weather information, and neural network types. The simulation results showed that the proposed robust time–frequency load-forecasting model performed better than the traditional time-domain forecasting models based on the comparison of the performance metrics, including the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜圈发布了新的文献求助10
2秒前
ding应助小研采纳,获得10
2秒前
CodeCraft应助汤飞柏采纳,获得10
3秒前
Ava应助研友_LwlAgn采纳,获得10
5秒前
5秒前
华仔应助jingmishensi采纳,获得10
6秒前
脱壳金蝉完成签到,获得积分10
6秒前
呜呜呜完成签到,获得积分10
7秒前
迷路中的骑手完成签到,获得积分10
8秒前
斯文败类应助飞飞飞采纳,获得10
9秒前
9秒前
qiaoj2006完成签到,获得积分10
10秒前
我是老大应助Eskimo采纳,获得10
10秒前
10秒前
所所应助简单起眸采纳,获得10
10秒前
哆啦顺利毕业完成签到 ,获得积分10
11秒前
intangible完成签到,获得积分10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
蒋时晏应助科研通管家采纳,获得50
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
La-crazy应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Ganlou应助科研通管家采纳,获得30
12秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
13秒前
汤飞柏发布了新的文献求助10
15秒前
Akim应助谦让蜜蜂采纳,获得10
15秒前
小茗同学发布了新的文献求助10
15秒前
15秒前
他们叫我张国荣完成签到,获得积分20
18秒前
8R60d8应助Cherry采纳,获得10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313419
求助须知:如何正确求助?哪些是违规求助? 2945813
关于积分的说明 8527122
捐赠科研通 2621489
什么是DOI,文献DOI怎么找? 1433679
科研通“疑难数据库(出版商)”最低求助积分说明 665080
邀请新用户注册赠送积分活动 650600