Robust Wavelet Transform Neural-Network-Based Short-Term Load Forecasting for Power Distribution Networks

自回归积分移动平均 希尔伯特-黄变换 人工神经网络 计算机科学 时域 小波变换 频域 自回归模型 小波 需求预测 时间序列 数据挖掘 能量(信号处理) 人工智能 工程类 计量经济学 机器学习 统计 数学 运筹学 计算机视觉
作者
Yijun Wang,Peiqian Guo,Nan Ma,Guowei Liu
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:15 (1): 296-296
标识
DOI:10.3390/su15010296
摘要

A precise short-term load-forecasting model is vital for energy companies to create accurate supply plans to reduce carbon dioxide production, causing our lives to be more environmentally friendly. A variety of high-voltage-level load-forecasting approaches, such as linear regression (LR), autoregressive integrated moving average (ARIMA), and artificial neural network (ANN) models, have been proposed in recent decades. However, unlike load forecasting in high-voltage transmission systems, load forecasting at the distribution network level is more challenging since distribution networks are more variable and nonstationary. Moreover, existing load-forecasting models only consider the features of the time domain, while the demand load is highly correlated to the frequency-domain information. This paper introduces a robust wavelet transform neural network load-forecasting model. The proposed model utilizes both time- and frequency-domain information to improve the model’s prediction accuracy. Firstly, three wavelet transform methods, variational mode decomposition (VMD), empirical mode decomposition (EMD), and empirical wavelet transformation (EWT), were introduced to transform the time-domain demand load data into frequency-domain data. Then, neural network models were trained to predict all components simultaneously. Finally, all the predicted data were aggregated to form the predicted demand load. Three cases were simulated in the case study stage to evaluate the prediction accuracy under different layer numbers, weather information, and neural network types. The simulation results showed that the proposed robust time–frequency load-forecasting model performed better than the traditional time-domain forecasting models based on the comparison of the performance metrics, including the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助酷酷行天采纳,获得10
1秒前
1秒前
SciGPT应助xly采纳,获得10
1秒前
科研小助完成签到,获得积分10
1秒前
时尚半仙发布了新的文献求助10
1秒前
专注大门完成签到,获得积分10
2秒前
2秒前
花非花雾非雾完成签到,获得积分10
2秒前
Lynn发布了新的文献求助10
3秒前
majiko完成签到,获得积分10
3秒前
4秒前
4秒前
共享精神应助静85采纳,获得10
4秒前
宇宙少女完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
乔垣结衣发布了新的文献求助10
7秒前
7秒前
顾矜应助鳗鱼飞松采纳,获得10
7秒前
跳跳妈妈发布了新的文献求助30
8秒前
8秒前
lanxixi完成签到,获得积分10
8秒前
sc完成签到,获得积分10
8秒前
清河海风完成签到,获得积分10
8秒前
naturehome完成签到,获得积分10
9秒前
9秒前
小蘑菇应助124578采纳,获得10
9秒前
shirley完成签到,获得积分10
9秒前
mumu发布了新的文献求助10
10秒前
Link完成签到,获得积分20
10秒前
yar应助可爱香槟采纳,获得10
10秒前
Hello应助东风采纳,获得10
10秒前
蟹浦肉完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Link发布了新的文献求助30
11秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002