A radiomics model development via the associations with genomics features in predicting axillary lymph node metastasis of breast cancer: a study based on a public database and single-centre verification

无线电技术 乳腺癌 基因组学 医学 Lasso(编程语言) 列线图 特征选择 转移 计算生物学 癌症 肿瘤科 基因组 基因 内科学 人工智能 计算机科学 放射科 生物 遗传学 万维网
作者
Hsuan Alan Chen,X. Wang,Lan Xiao,Tao Yu,L. Li,Shengjun Tang,Shengni Liu,Fujie Jiang,L. Wang,Jinghui Zhang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:78 (3): e279-e287 被引量:4
标识
DOI:10.1016/j.crad.2022.11.015
摘要

To evaluate the predictive performance of the radiomics model in predicting axillary lymph node (ALN) metastasis through the associations between radiomics features and genomic features in patients with breast cancer.Patients with breast cancer were enrolled retrospectively from a public database (111 patients as training group) and one hospital (15 patients as external validation group). The genomics features from transcriptome data and radiomics features from dynamic contrast-enhanced magnetic resonance imaging (MRI) were collected. Firstly, overlapping genes were identified using the Kyoto Encyclopedia of Genes and Genomes and differentially expressed gene analysis, while radiomics features were reduced using a data-driven method. Then, the associations between overlapping genes and retained radiomics features were assessed to obtain key pairs of radiomics-genomics features. Furthermore, the least absolute shrinkage and selection operator (LASSO) algorithm was used to detect the key-pairs features. Finally, radiomics and genomics models were constructed to predict ALN metastasis.After using the hybrid data- and gene-driven selection method, key pairs of features were detected, which consisted of six radiomic features associated with four genomic features. The radiomics model exhibited comparable performance to the genomics model in predicting ALN metastasis (radiomic model: area under the curve [AUC] = 0.71, sensitivity = 77%, specificity = 56%; genomic model: AUC = 0.72, sensitivity = 85%, specificity = 74%). The four genomic features were enriched in six pathways and related to metabolism and human diseases.The radiomics model established using the gene-driven hybrid selection method could predict ALN metastasis in breast cancer, which showed comparable performance to the genomics model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
Wow发布了新的文献求助10
1秒前
Lucas应助SZY采纳,获得10
2秒前
2秒前
FashionBoy应助谢同学采纳,获得10
2秒前
2秒前
2秒前
所所应助Sayhai采纳,获得10
2秒前
3秒前
有求必_应发布了新的文献求助10
3秒前
暮光不ling发布了新的文献求助10
4秒前
4秒前
孤独的夜行喵关注了科研通微信公众号
4秒前
4秒前
4秒前
mia发布了新的文献求助10
4秒前
4秒前
我的白起是国服完成签到 ,获得积分10
5秒前
蛋蛋白完成签到,获得积分20
6秒前
个性的紫菜应助yulia采纳,获得20
6秒前
6秒前
Gotyababy发布了新的文献求助10
6秒前
7秒前
7秒前
pakono发布了新的文献求助20
8秒前
科研通AI5应助温柔的婷采纳,获得30
8秒前
Sara发布了新的文献求助10
9秒前
斑驳发布了新的文献求助10
9秒前
秦艽发布了新的文献求助10
9秒前
乐乐应助无语的千儿采纳,获得10
9秒前
9秒前
9秒前
FashionBoy应助zifeimo采纳,获得10
9秒前
9秒前
平淡的快乐完成签到,获得积分10
9秒前
肉脸小鱼完成签到 ,获得积分10
9秒前
9秒前
英姑应助愉快迎荷采纳,获得10
10秒前
暮光不ling完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403