A radiomics model development via the associations with genomics features in predicting axillary lymph node metastasis of breast cancer: a study based on a public database and single-centre verification

无线电技术 乳腺癌 基因组学 医学 Lasso(编程语言) 列线图 特征选择 转移 计算生物学 癌症 肿瘤科 基因组 基因 内科学 人工智能 计算机科学 放射科 生物 遗传学 万维网
作者
Hsuan Alan Chen,X. Wang,Lan Xiao,Tao Yu,L. Li,Shengjun Tang,Shengni Liu,Fujie Jiang,L. Wang,Jinghui Zhang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:78 (3): e279-e287 被引量:3
标识
DOI:10.1016/j.crad.2022.11.015
摘要

To evaluate the predictive performance of the radiomics model in predicting axillary lymph node (ALN) metastasis through the associations between radiomics features and genomic features in patients with breast cancer.Patients with breast cancer were enrolled retrospectively from a public database (111 patients as training group) and one hospital (15 patients as external validation group). The genomics features from transcriptome data and radiomics features from dynamic contrast-enhanced magnetic resonance imaging (MRI) were collected. Firstly, overlapping genes were identified using the Kyoto Encyclopedia of Genes and Genomes and differentially expressed gene analysis, while radiomics features were reduced using a data-driven method. Then, the associations between overlapping genes and retained radiomics features were assessed to obtain key pairs of radiomics-genomics features. Furthermore, the least absolute shrinkage and selection operator (LASSO) algorithm was used to detect the key-pairs features. Finally, radiomics and genomics models were constructed to predict ALN metastasis.After using the hybrid data- and gene-driven selection method, key pairs of features were detected, which consisted of six radiomic features associated with four genomic features. The radiomics model exhibited comparable performance to the genomics model in predicting ALN metastasis (radiomic model: area under the curve [AUC] = 0.71, sensitivity = 77%, specificity = 56%; genomic model: AUC = 0.72, sensitivity = 85%, specificity = 74%). The four genomic features were enriched in six pathways and related to metabolism and human diseases.The radiomics model established using the gene-driven hybrid selection method could predict ALN metastasis in breast cancer, which showed comparable performance to the genomics model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助penghaha采纳,获得10
刚刚
1秒前
斯文败类应助辣鸡小王采纳,获得10
1秒前
田様应助一一采纳,获得10
1秒前
田様应助Snoopy_Swan采纳,获得10
1秒前
房东家的猫完成签到,获得积分10
2秒前
自由尔丝完成签到,获得积分10
2秒前
YESKY发布了新的文献求助10
3秒前
4秒前
4秒前
贰鸟应助s可采纳,获得20
4秒前
5秒前
哈好好哈哈好完成签到 ,获得积分10
6秒前
森眸应助迷路冰安采纳,获得10
6秒前
SHAN完成签到,获得积分10
7秒前
DYLAN_ZZ发布了新的文献求助10
7秒前
临在完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
港岛妹妹完成签到 ,获得积分10
9秒前
情怀应助fff采纳,获得10
10秒前
干净的时光应助queer采纳,获得10
10秒前
10秒前
hopen发布了新的文献求助10
12秒前
仔仔发布了新的文献求助10
12秒前
penghaha发布了新的文献求助10
12秒前
yatou5651发布了新的文献求助30
12秒前
大林子发布了新的文献求助10
13秒前
学术渣完成签到 ,获得积分10
13秒前
14秒前
15秒前
15秒前
科研通AI2S应助shawn采纳,获得10
16秒前
犹豫翠萱完成签到 ,获得积分10
16秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
顺利的伊应助科研通管家采纳,获得20
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156157
求助须知:如何正确求助?哪些是违规求助? 2807647
关于积分的说明 7873898
捐赠科研通 2465881
什么是DOI,文献DOI怎么找? 1312484
科研通“疑难数据库(出版商)”最低求助积分说明 630109
版权声明 601905