亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A radiomics model development via the associations with genomics features in predicting axillary lymph node metastasis of breast cancer: a study based on a public database and single-centre verification

无线电技术 乳腺癌 基因组学 医学 Lasso(编程语言) 列线图 特征选择 转移 计算生物学 癌症 肿瘤科 基因组 基因 内科学 人工智能 计算机科学 放射科 生物 遗传学 万维网
作者
Hsuan Alan Chen,X. Wang,Lan Xiao,Tao Yu,L. Li,Shengjun Tang,Shengni Liu,Fujie Jiang,L. Wang,Jinghui Zhang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:78 (3): e279-e287 被引量:4
标识
DOI:10.1016/j.crad.2022.11.015
摘要

To evaluate the predictive performance of the radiomics model in predicting axillary lymph node (ALN) metastasis through the associations between radiomics features and genomic features in patients with breast cancer.Patients with breast cancer were enrolled retrospectively from a public database (111 patients as training group) and one hospital (15 patients as external validation group). The genomics features from transcriptome data and radiomics features from dynamic contrast-enhanced magnetic resonance imaging (MRI) were collected. Firstly, overlapping genes were identified using the Kyoto Encyclopedia of Genes and Genomes and differentially expressed gene analysis, while radiomics features were reduced using a data-driven method. Then, the associations between overlapping genes and retained radiomics features were assessed to obtain key pairs of radiomics-genomics features. Furthermore, the least absolute shrinkage and selection operator (LASSO) algorithm was used to detect the key-pairs features. Finally, radiomics and genomics models were constructed to predict ALN metastasis.After using the hybrid data- and gene-driven selection method, key pairs of features were detected, which consisted of six radiomic features associated with four genomic features. The radiomics model exhibited comparable performance to the genomics model in predicting ALN metastasis (radiomic model: area under the curve [AUC] = 0.71, sensitivity = 77%, specificity = 56%; genomic model: AUC = 0.72, sensitivity = 85%, specificity = 74%). The four genomic features were enriched in six pathways and related to metabolism and human diseases.The radiomics model established using the gene-driven hybrid selection method could predict ALN metastasis in breast cancer, which showed comparable performance to the genomics model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
俏皮元珊完成签到 ,获得积分10
2秒前
oleskarabach发布了新的文献求助10
3秒前
18秒前
oleskarabach发布了新的文献求助10
45秒前
Charlie完成签到 ,获得积分10
47秒前
Willy完成签到,获得积分10
51秒前
1分钟前
caca完成签到,获得积分0
1分钟前
12591发布了新的文献求助10
1分钟前
12591完成签到,获得积分10
1分钟前
xiw发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
急求大佬帮助的科研小白完成签到,获得积分10
1分钟前
SnnerX完成签到 ,获得积分10
2分钟前
谦让飞飞发布了新的文献求助10
2分钟前
morena应助Clementine采纳,获得10
2分钟前
zzz完成签到 ,获得积分10
2分钟前
深情安青应助lulu采纳,获得10
2分钟前
小丸子和zz完成签到 ,获得积分10
2分钟前
2分钟前
河狸完成签到,获得积分10
2分钟前
2分钟前
2分钟前
JamesPei应助琅琊为刃采纳,获得10
2分钟前
2分钟前
感动的吐司完成签到 ,获得积分10
2分钟前
田様应助zeran采纳,获得10
2分钟前
wop111发布了新的文献求助10
2分钟前
2分钟前
3分钟前
爱静静完成签到,获得积分0
3分钟前
zeran发布了新的文献求助10
3分钟前
wop111完成签到,获得积分0
3分钟前
阿翼完成签到 ,获得积分10
3分钟前
3分钟前
李兴完成签到 ,获得积分10
3分钟前
lulu发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714403
求助须知:如何正确求助?哪些是违规求助? 5223641
关于积分的说明 15273228
捐赠科研通 4865850
什么是DOI,文献DOI怎么找? 2612433
邀请新用户注册赠送积分活动 1562512
关于科研通互助平台的介绍 1519787