A radiomics model development via the associations with genomics features in predicting axillary lymph node metastasis of breast cancer: a study based on a public database and single-centre verification

无线电技术 乳腺癌 基因组学 医学 Lasso(编程语言) 列线图 特征选择 转移 计算生物学 癌症 肿瘤科 基因组 基因 内科学 人工智能 计算机科学 放射科 生物 遗传学 万维网
作者
Hsuan Alan Chen,X. Wang,Lan Xiao,Tao Yu,L. Li,Shengjun Tang,Shengni Liu,Fujie Jiang,L. Wang,Jinghui Zhang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:78 (3): e279-e287 被引量:4
标识
DOI:10.1016/j.crad.2022.11.015
摘要

To evaluate the predictive performance of the radiomics model in predicting axillary lymph node (ALN) metastasis through the associations between radiomics features and genomic features in patients with breast cancer.Patients with breast cancer were enrolled retrospectively from a public database (111 patients as training group) and one hospital (15 patients as external validation group). The genomics features from transcriptome data and radiomics features from dynamic contrast-enhanced magnetic resonance imaging (MRI) were collected. Firstly, overlapping genes were identified using the Kyoto Encyclopedia of Genes and Genomes and differentially expressed gene analysis, while radiomics features were reduced using a data-driven method. Then, the associations between overlapping genes and retained radiomics features were assessed to obtain key pairs of radiomics-genomics features. Furthermore, the least absolute shrinkage and selection operator (LASSO) algorithm was used to detect the key-pairs features. Finally, radiomics and genomics models were constructed to predict ALN metastasis.After using the hybrid data- and gene-driven selection method, key pairs of features were detected, which consisted of six radiomic features associated with four genomic features. The radiomics model exhibited comparable performance to the genomics model in predicting ALN metastasis (radiomic model: area under the curve [AUC] = 0.71, sensitivity = 77%, specificity = 56%; genomic model: AUC = 0.72, sensitivity = 85%, specificity = 74%). The four genomic features were enriched in six pathways and related to metabolism and human diseases.The radiomics model established using the gene-driven hybrid selection method could predict ALN metastasis in breast cancer, which showed comparable performance to the genomics model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhu完成签到,获得积分10
刚刚
喵喵完成签到,获得积分10
1秒前
Dee完成签到,获得积分10
1秒前
钻石DrWang完成签到,获得积分10
1秒前
洛尘完成签到,获得积分10
1秒前
LJX完成签到,获得积分10
1秒前
峥2发布了新的文献求助10
1秒前
Dream完成签到,获得积分10
2秒前
LW完成签到,获得积分10
2秒前
Leo完成签到,获得积分10
2秒前
庸俗发布了新的文献求助10
2秒前
3秒前
Princessshark发布了新的文献求助100
3秒前
郑历康给郑历康的求助进行了留言
3秒前
4秒前
北念霜oD4发布了新的文献求助10
4秒前
cm完成签到,获得积分10
4秒前
5秒前
LW发布了新的文献求助10
5秒前
Brave完成签到,获得积分10
5秒前
Tiffany完成签到,获得积分10
5秒前
木心应助舒心雨采纳,获得20
5秒前
ttrr发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
穆紫研完成签到 ,获得积分10
6秒前
666完成签到,获得积分10
6秒前
6秒前
liaokilo完成签到,获得积分10
7秒前
7秒前
善良傲柏完成签到,获得积分10
7秒前
隐形曼青应助飘逸鸵鸟采纳,获得10
7秒前
neil完成签到,获得积分10
8秒前
欣喜电源完成签到,获得积分10
8秒前
8秒前
calm完成签到,获得积分10
8秒前
9秒前
10秒前
xiaxianong完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582