表面改性
材料科学
氢氧化物
乙炔
纳米结构
配体(生物化学)
无定形固体
纳米技术
催化作用
化学工程
无机化学
结晶学
有机化学
化学
受体
工程类
生物化学
作者
Qiming Liu,Yi Peng,Zaheer Masood,Davida Briana DuBois,John Tressel,Forrest Nichols,Paul D. Ashby,Rene Mercado,Tufa E. Assafa,Dingjie Pan,Han-Lin Kuo,Jennifer Lu,F. Bridges,Glenn L. Millhauser,Qingfeng Ge,Shaowei Chen
标识
DOI:10.1002/adma.202208665
摘要
Abstract Copper compounds have been extensively investigated for diverse applications. However, studies of cuprous hydroxide (CuOH) have been scarce due to structural metastability. Herein, a facile, wet‐chemistry procedure is reported for the preparation of stable CuOH nanostructures via deliberate functionalization with select organic ligands, such as acetylene and mercapto derivatives. The resulting nanostructures are found to exhibit a nanoribbon morphology consisting of small nanocrystals embedded within a largely amorphous nanosheet‐like scaffold. The acetylene derivatives are found to anchor onto the CuOH forming CuC linkages, whereas CuS interfacial bonds are formed with the mercapto ligands. Effective electronic coupling occurs at the ligand‐core interface in the former, in contrast to mostly non‐conjugated interfacial bonds in the latter, as manifested in spectroscopic measurements and confirmed in theoretical studies based on first principles calculations. Notably, the acetylene‐capped CuOH nanostructures exhibit markedly enhanced photodynamic activity in the inhibition of bacteria growth, as compared to the mercapto‐capped counterparts due to a reduced material bandgap and effective photocatalytic generation of reactive oxygen species. Results from this study demonstrate that deliberate structural engineering with select organic ligands is an effective strategy in the stabilization and functionalization of CuOH nanostructures, a critical first step in exploring their diverse applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI