亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RNAincoder: a deep learning-based encoder for RNA and RNA-associated interaction

核糖核酸 计算生物学 生物 编码(内存) 代表(政治) 嵌入 水准点(测量) 补语(音乐) 人工智能 深度学习 计算机科学 特征(语言学) 编码器 遗传学 基因 表型 语言学 哲学 大地测量学 互补 政治 政治学 法学 地理 操作系统
作者
Yunxia Wang,Zhen Chen,Ziqi Pan,Shijie Huang,Jin Liu,Weiqi Xia,Hongning Zhang,Mingyue Zheng,Honglin Li,Tingjun Hou,Feng Zhu
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:51 (W1): W509-W519 被引量:19
标识
DOI:10.1093/nar/gkad404
摘要

Ribonucleic acids (RNAs) involve in various physiological/pathological processes by interacting with proteins, compounds, and other RNAs. A variety of powerful computational methods have been developed to predict such valuable interactions. However, all these methods rely heavily on the 'digitalization' (also known as 'encoding') of RNA-associated interacting pairs into a computer-recognizable descriptor. In other words, it is urgently needed to have a powerful tool that can not only represent each interacting partner but also integrate both partners into a computer-recognizable interaction. Herein, RNAincoder (deep learning-based encoder for RNA-associated interactions) was therefore proposed to (a) provide a comprehensive collection of RNA encoding features, (b) realize the representation of any RNA-associated interaction based on a well-established deep learning-based embedding strategy and (c) enable large-scale scanning of all possible feature combinations to identify the one of optimal performance in RNA-associated interaction prediction. The effectiveness of RNAincoder was extensively validated by case studies on benchmark datasets. All in all, RNAincoder is distinguished for its capability in providing a more accurate representation of RNA-associated interactions, which makes it an indispensable complement to other available tools. RNAincoder can be accessed at https://idrblab.org/rnaincoder/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI6.1应助12345采纳,获得30
2秒前
3秒前
5秒前
XMH发布了新的文献求助10
8秒前
tosuto house完成签到 ,获得积分10
12秒前
12秒前
15秒前
12345发布了新的文献求助30
18秒前
科研通AI6.1应助XMH采纳,获得10
20秒前
41秒前
49秒前
浮游漂漂应助Karol采纳,获得10
52秒前
可爱花瓣完成签到,获得积分10
54秒前
56秒前
59秒前
1分钟前
1分钟前
1分钟前
酷酷的大米完成签到,获得积分10
1分钟前
Lebpom发布了新的文献求助10
1分钟前
1分钟前
馒头发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
所所应助Lebpom采纳,获得30
1分钟前
快乐芷荷完成签到 ,获得积分10
1分钟前
CipherSage应助动听的又亦采纳,获得10
1分钟前
英俊的铭应助LucyMartinez采纳,获得10
1分钟前
敬业乐群完成签到,获得积分10
1分钟前
2分钟前
2分钟前
LucyMartinez发布了新的文献求助10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
2分钟前
馒头完成签到,获得积分20
2分钟前
潇洒莞完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746620
求助须知:如何正确求助?哪些是违规求助? 5436547
关于积分的说明 15355678
捐赠科研通 4886645
什么是DOI,文献DOI怎么找? 2627324
邀请新用户注册赠送积分活动 1575809
关于科研通互助平台的介绍 1532565