RNAincoder: a deep learning-based encoder for RNA and RNA-associated interaction

核糖核酸 计算生物学 生物 编码(内存) 代表(政治) 嵌入 水准点(测量) 补语(音乐) 人工智能 深度学习 计算机科学 特征(语言学) 编码器 遗传学 基因 表型 语言学 哲学 大地测量学 互补 政治 政治学 法学 地理 操作系统
作者
Yunxia Wang,Zhen Chen,Ziqi Pan,Shijie Huang,Jin Liu,Weiqi Xia,Hongning Zhang,Mingyue Zheng,Honglin Li,Tingjun Hou,Feng Zhu
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:51 (W1): W509-W519 被引量:19
标识
DOI:10.1093/nar/gkad404
摘要

Ribonucleic acids (RNAs) involve in various physiological/pathological processes by interacting with proteins, compounds, and other RNAs. A variety of powerful computational methods have been developed to predict such valuable interactions. However, all these methods rely heavily on the 'digitalization' (also known as 'encoding') of RNA-associated interacting pairs into a computer-recognizable descriptor. In other words, it is urgently needed to have a powerful tool that can not only represent each interacting partner but also integrate both partners into a computer-recognizable interaction. Herein, RNAincoder (deep learning-based encoder for RNA-associated interactions) was therefore proposed to (a) provide a comprehensive collection of RNA encoding features, (b) realize the representation of any RNA-associated interaction based on a well-established deep learning-based embedding strategy and (c) enable large-scale scanning of all possible feature combinations to identify the one of optimal performance in RNA-associated interaction prediction. The effectiveness of RNAincoder was extensively validated by case studies on benchmark datasets. All in all, RNAincoder is distinguished for its capability in providing a more accurate representation of RNA-associated interactions, which makes it an indispensable complement to other available tools. RNAincoder can be accessed at https://idrblab.org/rnaincoder/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hq发布了新的文献求助10
刚刚
深情安青应助猜不猜不采纳,获得10
刚刚
田园镇完成签到 ,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助30
刚刚
宋真玉完成签到,获得积分10
1秒前
完美世界应助cg666采纳,获得10
2秒前
猫猫无敌发布了新的文献求助10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
spc68应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
危机的阁应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
研友_Z60ObL完成签到,获得积分10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
mm应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
Adc应助科研通管家采纳,获得10
4秒前
4秒前
勤学勤积累完成签到,获得积分10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
2339822272完成签到,获得积分10
4秒前
5秒前
jdndbd完成签到,获得积分10
5秒前
失眠的香菇完成签到 ,获得积分10
5秒前
5秒前
yangqi完成签到,获得积分10
6秒前
Zll发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425