亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ensemble machine learning methods in screening electronic health records: A scoping review

机器学习 集成学习 人工智能 计算机科学 背景(考古学) 集合预报 生物 古生物学
作者
C. Stevens,Alexander R.M. Lyons,Kanika Dharmayat,Alireza S. Mahani,Kausik K. Ray,Antonio J. Vallejo‐Vaz,Mansour TA Sharabiani
出处
期刊:Digital health [SAGE]
卷期号:9: 205520762311732-205520762311732 被引量:5
标识
DOI:10.1177/20552076231173225
摘要

Background Electronic health records provide the opportunity to identify undiagnosed individuals likely to have a given disease using machine learning techniques, and who could then benefit from more medical screening and case finding, reducing the number needed to screen with convenience and healthcare cost savings. Ensemble machine learning models combining multiple prediction estimates into one are often said to provide better predictive performances than non-ensemble models. Yet, to our knowledge, no literature review summarises the use and performances of different types of ensemble machine learning models in the context of medical pre-screening. Method We aimed to conduct a scoping review of the literature reporting the derivation of ensemble machine learning models for screening of electronic health records. We searched EMBASE and MEDLINE databases across all years applying a formal search strategy using terms related to medical screening, electronic health records and machine learning. Data were collected, analysed, and reported in accordance with the PRISMA scoping review guideline. Results A total of 3355 articles were retrieved, of which 145 articles met our inclusion criteria and were included in this study. Ensemble machine learning models were increasingly employed across several medical specialties and often outperformed non-ensemble approaches. Ensemble machine learning models with complex combination strategies and heterogeneous classifiers often outperformed other types of ensemble machine learning models but were also less used. Ensemble machine learning models methodologies, processing steps and data sources were often not clearly described. Conclusions Our work highlights the importance of deriving and comparing the performances of different types of ensemble machine learning models when screening electronic health records and underscores the need for more comprehensive reporting of machine learning methodologies employed in clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一号小玩家完成签到,获得积分10
刚刚
1秒前
喜悦的立轩关注了科研通微信公众号
10秒前
JamesPei应助做实验的蘑菇采纳,获得10
18秒前
科研通AI2S应助zzeru21采纳,获得30
25秒前
28秒前
36秒前
40秒前
43秒前
liujing_242022完成签到,获得积分10
44秒前
研友_VZG7GZ应助托尔斯泰采纳,获得10
46秒前
47秒前
心灵美大侠完成签到,获得积分10
48秒前
54秒前
戴哈哈发布了新的文献求助10
57秒前
1分钟前
shengz发布了新的文献求助10
1分钟前
戴哈哈完成签到,获得积分10
1分钟前
Hello应助刘青采纳,获得10
1分钟前
ranj完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
托尔斯泰发布了新的文献求助10
1分钟前
1分钟前
叩墙牲进化版完成签到,获得积分10
1分钟前
1分钟前
1分钟前
早晨发布了新的文献求助10
1分钟前
1分钟前
1分钟前
婉儿发布了新的文献求助10
1分钟前
快乐大炮完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助peitsan采纳,获得10
2分钟前
科研通AI2S应助peitsan采纳,获得10
2分钟前
2分钟前
Albert完成签到,获得积分10
2分钟前
YongGanNN发布了新的文献求助10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133924
求助须知:如何正确求助?哪些是违规求助? 2784809
关于积分的说明 7768627
捐赠科研通 2440175
什么是DOI,文献DOI怎么找? 1297203
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791