RNA序列
转录组
仿形(计算机编程)
计算生物学
基因表达谱
计算机科学
生物
遗传学
基因表达
基因
操作系统
作者
Pradeep Reddy Cingaram,Felipe Beckedorff,Jingyin Yue,Fan Liu,Helena G. Dos Santos,Ramin Shiekhattar
标识
DOI:10.1101/2024.05.08.593182
摘要
Precision nuclear run-on (PRO) sequencing (PRO-seq) is a powerful technique for mapping polymerase active sites with nucleotide resolution and measuring newly synthesized transcripts at both promoters and enhancer elements. The current PRO-seq protocol is time-intensive, technically challenging, and requires a large amount of starting material. To overcome these limitations, we developed rapid PRO-seq (rPRO-seq) which utilizes pre-adenylated single-stranded DNAs (AppDNA), a dimer blocking oligonucleotide (DBO), on-bead 5’ RNA end repair, and column-based purification. These modifications enabled efficient transcriptome mapping within a single day (∼12 hours) increasing ligation efficiency, abolished adapter dimers, and reduced sample loss and RNA degradation. We demonstrate the reproducibility of rPRO-seq in measuring polymerases at promoters, gene bodies, and enhancers as compared to original PRO-seq protocols. Additionally, rPRO-seq is scalable, allowing for transcriptome mapping with as little as 25,000 cells. We apply rPRO-seq to study the role of Integrator in mouse hematopoietic stem and progenitor cell (mHSPC) homeostasis, identifying Ints11 as an essential component of transcriptional regulation and RNA processing in mHSPC homeostasis. Overall, rPRO-seq represents a significant advance in the field of nascent transcript analyses and will be a valuable tool for generating patient-specific genome-wide transcription profiles with minimal sample requirements.
科研通智能强力驱动
Strongly Powered by AbleSci AI