亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sensor fusion with multi-modal ground sensor network for endangered animal protection in large areas

濒危物种 情态动词 融合 传感器融合 计算机科学 环境科学 材料科学 人工智能 生态学 语言学 生物 哲学 栖息地 高分子化学
作者
Sam Siewert,Luis Felipe Zapata-Rivera,Catlina Aranzazu-Suescun,George Waldron,Ravindra Mangar,Devang Raval,Prasanna Vaddkkepurakkal,Feras Alshehri
标识
DOI:10.1117/12.3012684
摘要

Based upon bench and field testing five distinct sensors as candidates for use in a large area ground sensor network, our team has determined cooperative sensor fusion modes of operation for infrasound, audible acoustic, fence vibration, visible cameras, and seismic geophones. The goal has been efficient coverage of large areas to provide alerts for poaching activity hot spots so UAVs (Unoccupied Aerial Vehicles) can provide rapid response to prevent poaching without need for constant patrolling. Prior work by our research team has focused on evaluation of sensing modes with a range of spatial, temporal, and spectral capabilities (satellite, aerial, ground acoustic, electrooptical/infrared, seismic, and fence vibration). Focus has been construction of low-cost sensors for sensor fusion to provide situational awareness via web interfaces. These systems jointly developed by Embry-Riddle Aeronautical University with California State University Chico have been tested at the Chico State University farm, and top-down sensor fusion methods such as deep learning (to detect or classify animals and threats) as well as bottom-up image and signal processing have been developed to create a fog and edge computing architecture. Modalities that specifically target elephant communication with infrasound and seismic activity are being investigated to enhance overall animal detection, tracking, and assessment of behavior. The goal is to evaluate effectiveness prior to testing on-site at a game park in South Africa, and to determine if the methods can be scaled to areas as large as Rietvlei, Medikwe, and Coleridge South Africa. Preliminary results from fog and edge node testing of visual and acoustic sensor fusion with artificial emulation of elephant vocalizations, infrasound rumbles, and stimulation typical of human presence (vehicles and voices) are provided along with promise to drive a heat map showing where park rangers should respond with highest priority.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我觉得叫别动不动就电脑端完成签到,获得积分10
1秒前
11秒前
12秒前
15秒前
小朱完成签到,获得积分10
17秒前
紫霃发布了新的文献求助10
19秒前
小小小蚂蚁完成签到,获得积分10
20秒前
blingbling发布了新的文献求助10
23秒前
30秒前
钟山完成签到,获得积分10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
Lucas应助科研通管家采纳,获得10
30秒前
Hello应助科研通管家采纳,获得10
30秒前
30秒前
cx完成签到,获得积分10
32秒前
34秒前
钟山发布了新的文献求助10
34秒前
思源应助紫霃采纳,获得10
34秒前
pain豆先生完成签到 ,获得积分10
36秒前
单薄碧灵完成签到 ,获得积分10
38秒前
40秒前
40秒前
41秒前
cx发布了新的文献求助10
42秒前
bcc666完成签到,获得积分10
43秒前
yanyuan完成签到,获得积分10
47秒前
bcc666发布了新的文献求助10
47秒前
紫霃完成签到,获得积分10
48秒前
JamesPei应助西瓜汁采纳,获得10
48秒前
48秒前
友好亚男完成签到 ,获得积分10
49秒前
49秒前
NexusExplorer应助十三号失眠采纳,获得10
50秒前
DH发布了新的文献求助10
51秒前
blingbling完成签到,获得积分10
54秒前
慧慧发布了新的文献求助10
54秒前
科研通AI2S应助bcc666采纳,获得10
55秒前
58秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111403
求助须知:如何正确求助?哪些是违规求助? 2761662
关于积分的说明 7666774
捐赠科研通 2416662
什么是DOI,文献DOI怎么找? 1282713
科研通“疑难数据库(出版商)”最低求助积分说明 619064
版权声明 599491