卵巢早衰
生物
泛素连接酶
卵泡发生
卵巢早衰
卵母细胞
卵泡
细胞生物学
泛素
卵巢
内分泌学
内科学
遗传学
胚胎发生
胚胎
医学
基因
作者
huihui zhao,Hanbin Zhang,Yüxia Zhou,Ling Shuai,Zhenguo Chen,Liping Wang
摘要
Abstract Premature ovarian insufficiency (POI) is one of the important causes of female infertility. Yet the aetiology for POI is still elusive. FBXW7 (F‐box with 7 tandem WD) is one of the important components of the Skp1‐Cullin1‐F‐box (SCF) E3 ubiquitin ligase. FBXW7 can regulate cell growth, survival and pluripotency through mediating ubiquitylation and degradation of target proteins via triggering the ubiquitin‐proteasome system, and is associated with tumorigenesis, haematopoiesis and testis development. However, evidence establishing the function of FBXW7 in ovary is still lacking. Here, we showed that FBXW7 protein level was significantly decreased in the ovaries of the cisplatin‐induced POI mouse model. We further showed that mice with oocyte‐specific deletion of Fbxw7 demonstrated POI, characterized with folliculogenic defects, early depletion of follicle reserve, disordered hormonal secretion, ovarian dysfunction and female infertility. Impaired oocyte‐GCs communication, manifested as down‐regulation of connexin 37, may contribute to follicular development failure in the Fbxw7 ‐mutant mice. Furthermore, single‐cell RNA sequencing and in situ hybridization results indicated an accumulation of Clu and Ccl2 transcripts, which may alter follicle microenvironment deleterious to oocyte development and accelerate POI. Our results establish the important role of Fbxw7 in folliculogenesis and ovarian function, and might provide valuable information for understanding POI and female infertility.
科研通智能强力驱动
Strongly Powered by AbleSci AI