HiDiffSeg: A hierarchical diffusion model for blood vessel segmentation in retinal fundus images

眼底(子宫) 计算机科学 分割 人工智能 视网膜 计算机视觉 模式识别(心理学) 眼科 医学
作者
Wenhui Huang,Fengting Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:253: 124249-124249 被引量:10
标识
DOI:10.1016/j.eswa.2024.124249
摘要

In medical diagnosis, achieving accurate segmentation of fundus vessels is crucial for understanding and identifying various anatomical structures. However, traditional algorithms often face challenges in achieving precise segmentation due to the poor quality of fundus images and the complex branching structure of vessels. To address this issue, we propose a novel approach called HiDiffSeg, which is a coarse-to-fine hierarchical diffusion model for blood vessel segmentation. Our method integrates an enhanced processing coarse-to-fine strategy for retinal fundus images into the denoising process of the diffusion model. The diffusion model is divided into two modules: the dual-guidance module (DGM) and the refinement-guidance module (RGM). The DGM takes the vascular skeleton image and the initial denoised vessel segmentation image generated by the vascular image enhancement model as conditions. Meanwhile, the RGM uses the fundus image as a condition to obtain more accurate results through iterative refinement. To emphasize the significance of vessel edges, we introduce a vessel enhancement module. By taking the original image as input, we generate a pixel-wise edge attention map, assigning greater importance to corresponding edge pixels. To the best of our knowledge, this is the first time a hierarchical diffusion model has been applied to fundus vessel segmentation. We demonstrate the accuracy of our method on three publicly available fundus retinal datasets (i.e., DRIVE, STARE, and CHASE_DB1) using evaluation metrics and compare it with eleven state-of-the-art fundus vessel segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助lucky采纳,获得10
1秒前
1秒前
2秒前
Tu发布了新的文献求助10
2秒前
halo发布了新的文献求助10
2秒前
自由文博完成签到 ,获得积分10
2秒前
Ada发布了新的文献求助10
3秒前
3秒前
深情安青应助yxc采纳,获得10
3秒前
3秒前
会袜子发布了新的文献求助50
3秒前
4秒前
4秒前
木南儿发布了新的文献求助10
4秒前
竹前家庆完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
sss完成签到,获得积分10
7秒前
独自人生发布了新的文献求助10
7秒前
7秒前
Hanayu完成签到 ,获得积分0
7秒前
搜集达人应助tianqiang采纳,获得10
8秒前
大道要熬发布了新的文献求助10
9秒前
鑫鑫发布了新的文献求助10
9秒前
9秒前
大方惜天发布了新的文献求助10
10秒前
Ada完成签到,获得积分10
10秒前
11秒前
原本山川发布了新的文献求助10
11秒前
阿林完成签到,获得积分10
11秒前
星辰大海应助Brave采纳,获得10
11秒前
YY完成签到 ,获得积分10
12秒前
12秒前
852应助赴约采纳,获得10
13秒前
幸运海星完成签到,获得积分10
14秒前
14秒前
赵小坤堃发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997