Synergetic Manipulation Mechanism of Single-Atom M–N4 and M–OH (M = Mn, Fe, Co, Ni) Sites for Ozone Activation: Theoretical Prediction and Experimental Verification

臭氧 化学 机制(生物学) Atom(片上系统) 反应机理 物理化学 物理 催化作用 计算机科学 有机化学 嵌入式系统 量子力学
作者
Guangfei Yu,Jing Wang,Zhaomeng Xu,Hongbin Cao,Qin Dai,Yiqiu Wu,Yongbing Xie
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (21): 9393-9403 被引量:6
标识
DOI:10.1021/acs.est.4c00812
摘要

Carbon-based single-atom catalysts (SACs) have been gradually introduced in heterogeneous catalytic ozonation (HCO), but the interface mechanism of O3 activation on the catalyst surface is still ambiguous, especially the effect of a surface hydroxyl group (M–OH) at metal sites. Herein, we combined theoretical calculations with experimental verifications to comprehensively investigate the O3 activation mechanisms on a series of conventional SAC structures with N-doped nanocarbon substrates (MN4–NCs, where M = Mn, Fe, Co, Ni). The synergetic manipulation effect of the metal atom and M–OH on O3 activation pathways was paid particular attention. O3 tends to directly interact with the metal atom on MnN4–NC, FeN4–NC, and NiN4–NC catalysts, among which MnN4–NC has the best catalytic activity for its relatively lower activation energy barrier of O3 (0.62 eV) and more active surface-adsorbed oxygen species (Oads). On the CoN4–NC catalyst, direct interaction of O3 with the metal site is energetically infeasible, but O3 can be activated to generate Oads or HO2 species from direct or indirect participation of M–OH sites. The experimental results showed that 90.7 and 82.3% of total organic carbon (TOC) was removed within 40 min during catalytic ozonation of p-hydroxybenzoic acid with MnN4–NC and CoN4–NC catalysts, respectively. Phosphate quenching, catalyst characterization, and EPR measurement further supported the theoretical prediction. This contribution provides fundamental insights into the O3 activation mechanism on SACs, and the methods and ideals could be helpful for future studies of environmental catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小飞七应助jiangnan采纳,获得10
1秒前
1秒前
1秒前
独角兽完成签到 ,获得积分10
1秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
2秒前
Geng完成签到,获得积分10
3秒前
3秒前
宇_完成签到,获得积分20
3秒前
香蕉觅云应助NEMO采纳,获得10
3秒前
4秒前
4秒前
星辰大海应助247793325采纳,获得20
4秒前
4秒前
灵巧荆发布了新的文献求助10
4秒前
4秒前
haimianbaobao完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
SAW发布了新的文献求助10
7秒前
爆米花应助LiShin采纳,获得10
7秒前
Jasper应助jxcandice采纳,获得10
8秒前
8秒前
Owen应助雾见春采纳,获得10
9秒前
aiming发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
无辜之卉发布了新的文献求助10
11秒前
yty发布了新的文献求助10
11秒前
烟花应助卡夫卡没在海边采纳,获得10
12秒前
456发布了新的文献求助10
13秒前
传奇3应助温暖以蓝采纳,获得10
13秒前
辛勤的仰完成签到,获得积分10
13秒前
如意新晴完成签到,获得积分10
13秒前
13秒前
zrk完成签到,获得积分20
14秒前
14秒前
szmsnail发布了新的文献求助20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794