Improving the transferability of adversarial examples through black-box feature attacks

可转让性 黑匣子 对抗制 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 机器学习 语言学 哲学 罗伊特
作者
Maoyuan Wang,Jinwei Wang,Bin Ma,Xiangyang Luo
出处
期刊:Neurocomputing [Elsevier]
卷期号:595: 127863-127863
标识
DOI:10.1016/j.neucom.2024.127863
摘要

Deep neural networks (DNNs) are vulnerable and susceptible to imperceptible perturbations. Adversarial examples become more and more popular. Black-box attacks are considered to be the most realistic scenario. Currently, transfer-based black-box attacks show excellent performance. However, transfer-based black-box attacks all require an agent model of the attack, which we call the source model. This leads to the existing transfer-based attacks limited by the features focused on the source model, which creates a bottleneck in improving the transferability of adversarial examples. In order to solve this problem, we propose an attack that mainly targets features that are insensitive to the source model, which we call the black-box feature attack. Specifically, we categorize the features of the image into white-box features and black-box features. The white-box features are source model-sensitive features and the black-box features are source model insensitive features. White-box features are only specific to the source model, while black-box features are more generalized for unknown models. By destroying the image white-box features, the fitted image is obtained and the model intermediate layer feature map is extracted. Afterward, the fitting gradient is found for the fitted images with different fitting degrees. We construct loss functions based on the obtained fitting gradients and feature maps to guide the attacks to better destroy the black-box features of the images. Extensive experiments demonstrate that our methods have higher transferability compared to state-of-the-art methods, which achieve more than 90% of transferability under the normal model. It is also significantly better than other methods on adversarially trained models. Even in the white-box setting, our attack has the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李李完成签到,获得积分10
1秒前
超级水壶发布了新的文献求助10
1秒前
1秒前
1秒前
张自信发布了新的文献求助10
3秒前
开灯人和关灯人完成签到,获得积分10
3秒前
调研昵称发布了新的文献求助10
3秒前
3秒前
3秒前
华仔应助qiqi采纳,获得10
4秒前
Rebecca完成签到,获得积分10
4秒前
4秒前
5秒前
Mlwwq发布了新的文献求助10
5秒前
领导范儿应助长情洙采纳,获得10
5秒前
洋洋完成签到,获得积分20
6秒前
Owen应助WY采纳,获得30
6秒前
6秒前
listener完成签到,获得积分10
7秒前
7秒前
7秒前
调研昵称发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助默默海露采纳,获得10
8秒前
彭于晏应助宝贝采纳,获得10
8秒前
金晶发布了新的文献求助10
9秒前
9秒前
Peter完成签到,获得积分20
9秒前
丰知然应助zhengke924采纳,获得10
9秒前
飘逸晓博完成签到 ,获得积分20
10秒前
coco完成签到 ,获得积分10
10秒前
科研菜鸟发布了新的文献求助10
10秒前
10秒前
大气的乌冬面完成签到,获得积分10
10秒前
10秒前
RUSTY完成签到,获得积分20
10秒前
田様应助11采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762