Improving the transferability of adversarial examples through black-box feature attacks

可转让性 黑匣子 对抗制 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 机器学习 语言学 哲学 罗伊特
作者
Maoyuan Wang,Jinwei Wang,Bin Ma,Xiangyang Luo
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:595: 127863-127863 被引量:9
标识
DOI:10.1016/j.neucom.2024.127863
摘要

Deep neural networks (DNNs) are vulnerable and susceptible to imperceptible perturbations. Adversarial examples become more and more popular. Black-box attacks are considered to be the most realistic scenario. Currently, transfer-based black-box attacks show excellent performance. However, transfer-based black-box attacks all require an agent model of the attack, which we call the source model. This leads to the existing transfer-based attacks limited by the features focused on the source model, which creates a bottleneck in improving the transferability of adversarial examples. In order to solve this problem, we propose an attack that mainly targets features that are insensitive to the source model, which we call the black-box feature attack. Specifically, we categorize the features of the image into white-box features and black-box features. The white-box features are source model-sensitive features and the black-box features are source model insensitive features. White-box features are only specific to the source model, while black-box features are more generalized for unknown models. By destroying the image white-box features, the fitted image is obtained and the model intermediate layer feature map is extracted. Afterward, the fitting gradient is found for the fitted images with different fitting degrees. We construct loss functions based on the obtained fitting gradients and feature maps to guide the attacks to better destroy the black-box features of the images. Extensive experiments demonstrate that our methods have higher transferability compared to state-of-the-art methods, which achieve more than 90% of transferability under the normal model. It is also significantly better than other methods on adversarially trained models. Even in the white-box setting, our attack has the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Llllllxxxxxxx完成签到,获得积分10
刚刚
1秒前
大模型应助不安红豆采纳,获得10
1秒前
1秒前
拾陆完成签到,获得积分10
2秒前
2秒前
李蔚然发布了新的文献求助10
3秒前
北过居庸完成签到,获得积分10
3秒前
张书源完成签到,获得积分10
4秒前
Aluhaer应助王俊采纳,获得20
4秒前
4秒前
chu完成签到 ,获得积分10
5秒前
neuron2021完成签到,获得积分10
5秒前
欣喜安蕾完成签到,获得积分10
6秒前
6秒前
无心的人雄完成签到 ,获得积分10
6秒前
PetersenGraph完成签到,获得积分10
6秒前
6秒前
天天做梦的李某人完成签到,获得积分10
7秒前
7秒前
北冥有鱼发布了新的文献求助10
7秒前
jiangqin123发布了新的文献求助10
8秒前
9秒前
重要问丝完成签到 ,获得积分10
9秒前
所所应助嘿嘿哈采纳,获得10
9秒前
尊敬的怀曼完成签到,获得积分10
9秒前
heysiri完成签到,获得积分10
10秒前
皮皮完成签到,获得积分20
10秒前
紫宸发布了新的文献求助10
11秒前
李蔚然完成签到,获得积分20
11秒前
聪123完成签到,获得积分10
14秒前
crazzzzzy发布了新的文献求助10
15秒前
Merryonwine发布了新的文献求助10
17秒前
笑点低诗桃完成签到,获得积分20
17秒前
单薄纸飞机完成签到,获得积分10
17秒前
所所应助和谐惜珊采纳,获得10
18秒前
夏天的风完成签到,获得积分10
19秒前
19秒前
19秒前
彪壮的幻莲完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178195
求助须知:如何正确求助?哪些是违规求助? 4366550
关于积分的说明 13595426
捐赠科研通 4216880
什么是DOI,文献DOI怎么找? 2312723
邀请新用户注册赠送积分活动 1311569
关于科研通互助平台的介绍 1259854