Improving the transferability of adversarial examples through black-box feature attacks

可转让性 黑匣子 对抗制 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 机器学习 语言学 哲学 罗伊特
作者
Maoyuan Wang,Jinwei Wang,Bin Ma,Xiangyang Luo
出处
期刊:Neurocomputing [Elsevier]
卷期号:595: 127863-127863 被引量:13
标识
DOI:10.1016/j.neucom.2024.127863
摘要

Deep neural networks (DNNs) are vulnerable and susceptible to imperceptible perturbations. Adversarial examples become more and more popular. Black-box attacks are considered to be the most realistic scenario. Currently, transfer-based black-box attacks show excellent performance. However, transfer-based black-box attacks all require an agent model of the attack, which we call the source model. This leads to the existing transfer-based attacks limited by the features focused on the source model, which creates a bottleneck in improving the transferability of adversarial examples. In order to solve this problem, we propose an attack that mainly targets features that are insensitive to the source model, which we call the black-box feature attack. Specifically, we categorize the features of the image into white-box features and black-box features. The white-box features are source model-sensitive features and the black-box features are source model insensitive features. White-box features are only specific to the source model, while black-box features are more generalized for unknown models. By destroying the image white-box features, the fitted image is obtained and the model intermediate layer feature map is extracted. Afterward, the fitting gradient is found for the fitted images with different fitting degrees. We construct loss functions based on the obtained fitting gradients and feature maps to guide the attacks to better destroy the black-box features of the images. Extensive experiments demonstrate that our methods have higher transferability compared to state-of-the-art methods, which achieve more than 90% of transferability under the normal model. It is also significantly better than other methods on adversarially trained models. Even in the white-box setting, our attack has the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静的蜗牛完成签到,获得积分10
刚刚
1秒前
orixero应助Rena采纳,获得10
1秒前
luye完成签到,获得积分10
1秒前
zhangyuze完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
氧硫硒锑铋完成签到,获得积分10
1秒前
殷勤的紫槐应助C_Note采纳,获得200
1秒前
研友_VZG7GZ应助卡拉米采纳,获得10
1秒前
wish完成签到,获得积分20
2秒前
lemon完成签到,获得积分10
3秒前
0000发布了新的文献求助10
3秒前
4秒前
啦啦啦发布了新的文献求助10
4秒前
善学以致用应助瀼瀼采纳,获得10
4秒前
5秒前
吴巧完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
YOGA发布了新的文献求助10
6秒前
领导范儿应助dingding采纳,获得10
6秒前
桐桐应助兰lanlan采纳,获得10
7秒前
科研通AI6应助求助人员采纳,获得10
7秒前
Jiang完成签到,获得积分10
7秒前
8秒前
8秒前
罗谦平完成签到,获得积分10
8秒前
9秒前
Bienk发布了新的文献求助10
9秒前
9秒前
LZ发布了新的文献求助10
10秒前
琴_Q123完成签到,获得积分10
10秒前
10秒前
123发布了新的文献求助10
10秒前
10秒前
CodeCraft应助小耗子采纳,获得10
10秒前
罗谦平发布了新的文献求助10
11秒前
11秒前
小瑞完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076