Improving the transferability of adversarial examples through black-box feature attacks

可转让性 黑匣子 对抗制 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 机器学习 语言学 哲学 罗伊特
作者
Maoyuan Wang,Jinwei Wang,Bin Ma,Xiangyang Luo
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:595: 127863-127863
标识
DOI:10.1016/j.neucom.2024.127863
摘要

Deep neural networks (DNNs) are vulnerable and susceptible to imperceptible perturbations. Adversarial examples become more and more popular. Black-box attacks are considered to be the most realistic scenario. Currently, transfer-based black-box attacks show excellent performance. However, transfer-based black-box attacks all require an agent model of the attack, which we call the source model. This leads to the existing transfer-based attacks limited by the features focused on the source model, which creates a bottleneck in improving the transferability of adversarial examples. In order to solve this problem, we propose an attack that mainly targets features that are insensitive to the source model, which we call the black-box feature attack. Specifically, we categorize the features of the image into white-box features and black-box features. The white-box features are source model-sensitive features and the black-box features are source model insensitive features. White-box features are only specific to the source model, while black-box features are more generalized for unknown models. By destroying the image white-box features, the fitted image is obtained and the model intermediate layer feature map is extracted. Afterward, the fitting gradient is found for the fitted images with different fitting degrees. We construct loss functions based on the obtained fitting gradients and feature maps to guide the attacks to better destroy the black-box features of the images. Extensive experiments demonstrate that our methods have higher transferability compared to state-of-the-art methods, which achieve more than 90% of transferability under the normal model. It is also significantly better than other methods on adversarially trained models. Even in the white-box setting, our attack has the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sylvia发布了新的文献求助10
1秒前
挽风完成签到,获得积分10
1秒前
行者发布了新的文献求助10
3秒前
小蘑菇应助LMZ采纳,获得10
4秒前
4秒前
波波完成签到 ,获得积分10
5秒前
5秒前
NexusExplorer应助QQ采纳,获得10
9秒前
10秒前
zhzike发布了新的文献求助100
11秒前
英俊的铭应助公西香露采纳,获得10
12秒前
15秒前
实验牛马完成签到 ,获得积分20
16秒前
猪猪hero应助欧皇采纳,获得10
17秒前
18秒前
英俊的铭应助古月采纳,获得10
18秒前
实验牛马关注了科研通微信公众号
19秒前
20秒前
johnny应助WZQ采纳,获得20
20秒前
左岸发布了新的文献求助10
21秒前
22秒前
公西香露发布了新的文献求助10
25秒前
25秒前
乐乐应助哈哈哈哈哈采纳,获得10
26秒前
SYLH应助FXe采纳,获得200
26秒前
26秒前
27秒前
27秒前
tsuru发布了新的文献求助10
29秒前
SYLH应助ztlooo采纳,获得20
29秒前
30秒前
气敏侠发布了新的文献求助10
30秒前
31秒前
31秒前
糕糕完成签到,获得积分10
31秒前
小马甲应助嘟嘟嘟嘟嘟采纳,获得10
32秒前
银杏发布了新的文献求助10
32秒前
一只小羊发布了新的文献求助10
34秒前
wanci应助吴五五采纳,获得10
34秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Metal-Ligand Multiple Bonds: The Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidene, or Alkylidyne Ligands 1st Edition 1500
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772784
求助须知:如何正确求助?哪些是违规求助? 3318336
关于积分的说明 10189791
捐赠科研通 3033117
什么是DOI,文献DOI怎么找? 1664106
邀请新用户注册赠送积分活动 796109
科研通“疑难数据库(出版商)”最低求助积分说明 757245