Improving the transferability of adversarial examples through black-box feature attacks

可转让性 黑匣子 对抗制 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 机器学习 语言学 哲学 罗伊特
作者
Maoyuan Wang,Jinwei Wang,Bin Ma,Xiangyang Luo
出处
期刊:Neurocomputing [Elsevier]
卷期号:595: 127863-127863
标识
DOI:10.1016/j.neucom.2024.127863
摘要

Deep neural networks (DNNs) are vulnerable and susceptible to imperceptible perturbations. Adversarial examples become more and more popular. Black-box attacks are considered to be the most realistic scenario. Currently, transfer-based black-box attacks show excellent performance. However, transfer-based black-box attacks all require an agent model of the attack, which we call the source model. This leads to the existing transfer-based attacks limited by the features focused on the source model, which creates a bottleneck in improving the transferability of adversarial examples. In order to solve this problem, we propose an attack that mainly targets features that are insensitive to the source model, which we call the black-box feature attack. Specifically, we categorize the features of the image into white-box features and black-box features. The white-box features are source model-sensitive features and the black-box features are source model insensitive features. White-box features are only specific to the source model, while black-box features are more generalized for unknown models. By destroying the image white-box features, the fitted image is obtained and the model intermediate layer feature map is extracted. Afterward, the fitting gradient is found for the fitted images with different fitting degrees. We construct loss functions based on the obtained fitting gradients and feature maps to guide the attacks to better destroy the black-box features of the images. Extensive experiments demonstrate that our methods have higher transferability compared to state-of-the-art methods, which achieve more than 90% of transferability under the normal model. It is also significantly better than other methods on adversarially trained models. Even in the white-box setting, our attack has the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wcj完成签到,获得积分10
刚刚
刚刚
2秒前
3秒前
dophin发布了新的文献求助10
3秒前
4秒前
落后的楼房完成签到,获得积分10
4秒前
4秒前
风中的赛凤完成签到,获得积分20
4秒前
Hirvi发布了新的文献求助10
5秒前
YW关注了科研通微信公众号
5秒前
Tieaciaa完成签到,获得积分10
5秒前
西西弗完成签到 ,获得积分10
5秒前
Jia关闭了Jia文献求助
6秒前
带象发布了新的文献求助20
6秒前
7秒前
lalala发布了新的文献求助10
7秒前
8秒前
伊绵好完成签到,获得积分10
8秒前
8秒前
嘟嘟图图完成签到,获得积分20
8秒前
rrr发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
12秒前
12秒前
顾矜应助hsing采纳,获得10
12秒前
FleurdelisDZhang完成签到,获得积分10
13秒前
杨夕发布了新的文献求助30
13秒前
xin发布了新的文献求助10
13秒前
bkagyin应助ramsey33采纳,获得30
13秒前
lmj565发布了新的文献求助10
14秒前
14秒前
14秒前
Jia发布了新的文献求助10
15秒前
明芬发布了新的文献求助10
15秒前
英姑应助风中的赛凤采纳,获得10
16秒前
kate发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943