Deep learning-designed implant-supported posterior crowns: Assessing time efficiency, tooth morphology, emergence profile, occlusion, and proximal contacts

闭塞 形态学(生物学) 牙科 植入 材料科学 牙合 口腔正畸科 医学 地质学 外科 古生物学
作者
Junho Cho,Gülce Çakmak,Jinhyeok Choi,Dong-Wook Lee,Hyung‐In Yoon,Burak Yılmaz,Martin Schimmel
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:147: 105142-105142 被引量:1
标识
DOI:10.1016/j.jdent.2024.105142
摘要

Objectives: To compare the outcomes of implant support crowns (ISCs) designed using deep learning (DL) software with those of ISCs designed by a technician using conventional computer-aided design software. Methods: Twenty resin-based partially edentulous casts (maxillary and mandibular) used for fabricating ISCs were evaluated retrospectively. ISCs were designed using a DL-based method with no modification of the as-generated outcome (DB), a DL-based method with further optimization by a dental technician (DM), and a conventional computer-aided design method by a technician (NC). Time efficiency, crown contour, occlusal table area, cusp angle, cusp height, emergence profile angle, occlusal contacts, and proximal contacts were compared among groups. Depending on the distribution of measured data, various statistical methods were used for comparative analyses with a significance level of 0.05. Results: ISCs in the DB group showed a significantly higher efficiency than those in the DM and NC groups (P≤0.001). ISCs in the DM group exhibited significantly smaller volume deviations than those in the DB group when superimposed on ISCs in the NC group (DB–NC vs. DM–NC pairs, P≤0.008). Except for the number and intensity of occlusal contacts (P≤0.004), ISCs in the DB and DM groups had occlusal table areas, cusp angles, cusp heights, proximal contact intensities, and emergence profile angles similar to those in the NC group (P≥0.157). Conclusions: A DL-based method can be beneficial for designing posterior ISCs in terms of time efficiency, occlusal table area, cusp angle, cusp height, proximal contact, and emergence profile, similar to the conventional human-based method. Clinical Significance: A deep learning-based design method can achieve clinically acceptable functional properties of posterior ISCs. However, further optimization by a technician could improve specific outcomes, such as the crown contour or emergence profile angle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
l老王完成签到 ,获得积分10
17秒前
等风来1234完成签到,获得积分10
19秒前
高兴寒梦完成签到 ,获得积分10
31秒前
一枝完成签到 ,获得积分10
33秒前
所得皆所愿完成签到 ,获得积分10
44秒前
没用的三轮完成签到,获得积分10
44秒前
45秒前
Singularity应助科研通管家采纳,获得10
45秒前
雷九万班完成签到 ,获得积分10
47秒前
不知道完成签到,获得积分10
48秒前
Augusterny完成签到 ,获得积分10
59秒前
Feng5945完成签到 ,获得积分10
1分钟前
cfsyyfujia完成签到 ,获得积分10
1分钟前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
1分钟前
淡淡醉波wuliao完成签到 ,获得积分10
1分钟前
xixi很困完成签到 ,获得积分10
2分钟前
愉快的冰萍完成签到 ,获得积分10
2分钟前
在水一方应助激情的含巧采纳,获得10
2分钟前
isedu完成签到,获得积分10
2分钟前
Singularity应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
风中一叶完成签到 ,获得积分10
2分钟前
Shrimp完成签到 ,获得积分10
2分钟前
2分钟前
安静严青完成签到 ,获得积分10
3分钟前
绿色心情完成签到 ,获得积分10
3分钟前
开朗白开水完成签到 ,获得积分10
3分钟前
激情的含巧完成签到,获得积分10
3分钟前
你好纠结伦完成签到,获得积分10
3分钟前
3分钟前
zjq完成签到 ,获得积分10
3分钟前
好名字完成签到,获得积分10
3分钟前
zhangruixue0519完成签到 ,获得积分10
3分钟前
logolush完成签到 ,获得积分10
3分钟前
西红柿不吃皮完成签到 ,获得积分10
3分钟前
SH123完成签到 ,获得积分10
3分钟前
loren313完成签到,获得积分0
3分钟前
3分钟前
夏添发布了新的文献求助10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010