重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

R‐MFE‐TCN: A correlation prediction model between body surface and tumor during respiratory movement

多元统计 相关性 计算机科学 稳健性(进化) 人工智能 特征(语言学) 模式识别(心理学) 超参数 数学 机器学习 几何学 语言学 生物化学 基因 哲学 化学
作者
Xuehu Wang,Yang Chang,Ziqi Liu,J. Zhang,Chao Xue,Li-Hong Xing,Yongchang Zheng,Chen Geng,Xiaoping Yin
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17183
摘要

Abstract Background 2D CT image‐guided radiofrequency ablation (RFA) is an exciting minimally invasive treatment that can destroy liver tumors without removing them. However, CT images can only provide limited static information, and the tumor will move with the patient's respiratory movement. Therefore, how to accurately locate tumors under free conditions is an urgent problem to be solved at present. Purpose The purpose of this study is to propose a respiratory correlation prediction model for mixed reality surgical assistance system, Riemannian and Multivariate Feature Enhanced Temporal Convolutional Network (R‐MFE‐TCN), and to achieve accurate respiratory correlation prediction. Methods The model adopts a respiration‐oriented Riemannian information enhancement strategy to expand the diversity of the dataset. A new Multivariate Feature Enhancement module (MFE) is proposed to retain respiratory data information, so that the network can fully explore the correlation of internal and external data information, the dual‐channel is used to retain multivariate respiratory feature, and the Multi‐headed Self‐attention obtains respiratory peak‐to‐valley value periodic information. This information significantly improves the prediction performance of the network. At the same time, the PSO algorithm is used for hyperparameter optimization. In the experiment, a total of seven patients' internal and external respiratory motion trajectories were obtained from the dataset, and the first six patients were selected as the training set. The respiratory signal collection frequency was 21 Hz. Results A large number of experiments on the dataset prove the good performance of this method, which improves the prediction accuracy while also having strong robustness. This method can reduce the delay deviation under long window prediction and achieve good performance. In the case of 400 ms, the average RMSE and MAE are 0.0453 and 0.0361 mm, respectively, which is better than other research methods. Conclusion The R‐MFE‐TCN can be extended to respiratory correlation prediction in different clinical situations, meeting the accuracy requirements for respiratory delay prediction in surgical assistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助蟲先生采纳,获得10
1秒前
拼搏雨兰完成签到,获得积分10
2秒前
2秒前
2秒前
姜露萍完成签到,获得积分10
2秒前
薯薯完成签到,获得积分10
2秒前
Lunar611发布了新的文献求助10
3秒前
Wefaily应助Jodie采纳,获得10
3秒前
611牛马完成签到 ,获得积分10
3秒前
3秒前
机密塔发布了新的文献求助10
4秒前
可爱感发布了新的文献求助10
4秒前
4秒前
美好眼神完成签到,获得积分10
5秒前
5秒前
田舒荔发布了新的文献求助10
6秒前
Lucas应助小周小周采纳,获得10
6秒前
科研通AI2S应助zhj采纳,获得10
6秒前
完美世界应助禾研采纳,获得10
6秒前
wei发布了新的文献求助10
6秒前
伶俐草丛完成签到,获得积分10
6秒前
6秒前
RY完成签到,获得积分10
8秒前
科研通AI6应助欣喜灵槐采纳,获得10
8秒前
9秒前
9秒前
9秒前
阔达猫咪发布了新的文献求助10
9秒前
mysticzz发布了新的文献求助10
9秒前
阿茗完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
9999发布了新的文献求助10
10秒前
XZZH完成签到,获得积分10
10秒前
破晓发布了新的文献求助10
10秒前
11秒前
芃芃野完成签到,获得积分10
11秒前
Lunar611完成签到,获得积分10
11秒前
汉堡包应助冰柠檬采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612