已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

R‐MFE‐TCN: A correlation prediction model between body surface and tumor during respiratory movement

多元统计 相关性 计算机科学 稳健性(进化) 人工智能 特征(语言学) 模式识别(心理学) 超参数 数学 机器学习 几何学 语言学 生物化学 基因 哲学 化学
作者
Xuehu Wang,Yang Chang,Ziqi Liu,J. Zhang,Chao Xue,Li-Hong Xing,Yongchang Zheng,Chen Geng,Xiaoping Yin
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17183
摘要

Abstract Background 2D CT image‐guided radiofrequency ablation (RFA) is an exciting minimally invasive treatment that can destroy liver tumors without removing them. However, CT images can only provide limited static information, and the tumor will move with the patient's respiratory movement. Therefore, how to accurately locate tumors under free conditions is an urgent problem to be solved at present. Purpose The purpose of this study is to propose a respiratory correlation prediction model for mixed reality surgical assistance system, Riemannian and Multivariate Feature Enhanced Temporal Convolutional Network (R‐MFE‐TCN), and to achieve accurate respiratory correlation prediction. Methods The model adopts a respiration‐oriented Riemannian information enhancement strategy to expand the diversity of the dataset. A new Multivariate Feature Enhancement module (MFE) is proposed to retain respiratory data information, so that the network can fully explore the correlation of internal and external data information, the dual‐channel is used to retain multivariate respiratory feature, and the Multi‐headed Self‐attention obtains respiratory peak‐to‐valley value periodic information. This information significantly improves the prediction performance of the network. At the same time, the PSO algorithm is used for hyperparameter optimization. In the experiment, a total of seven patients' internal and external respiratory motion trajectories were obtained from the dataset, and the first six patients were selected as the training set. The respiratory signal collection frequency was 21 Hz. Results A large number of experiments on the dataset prove the good performance of this method, which improves the prediction accuracy while also having strong robustness. This method can reduce the delay deviation under long window prediction and achieve good performance. In the case of 400 ms, the average RMSE and MAE are 0.0453 and 0.0361 mm, respectively, which is better than other research methods. Conclusion The R‐MFE‐TCN can be extended to respiratory correlation prediction in different clinical situations, meeting the accuracy requirements for respiratory delay prediction in surgical assistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姆姆没买完成签到 ,获得积分10
3秒前
4秒前
6秒前
亿一完成签到 ,获得积分10
7秒前
辣椒发布了新的文献求助10
9秒前
13秒前
Wind0240完成签到,获得积分10
14秒前
13发布了新的文献求助10
15秒前
可乐完成签到,获得积分10
18秒前
额123没名完成签到 ,获得积分10
19秒前
东风完成签到,获得积分10
23秒前
红毛兔完成签到 ,获得积分10
24秒前
32秒前
Cochrane发布了新的文献求助20
39秒前
Eason_C完成签到 ,获得积分10
39秒前
41秒前
44秒前
洛河三千星完成签到 ,获得积分10
45秒前
寒冷哈密瓜完成签到 ,获得积分0
45秒前
火星人完成签到 ,获得积分10
46秒前
Chillym发布了新的文献求助10
47秒前
美丽星期五完成签到,获得积分10
52秒前
明智的选择完成签到,获得积分10
54秒前
56秒前
顾矜应助bjyx采纳,获得10
58秒前
lovelife完成签到,获得积分10
59秒前
wlxs发布了新的文献求助10
59秒前
自然的梦松完成签到,获得积分20
59秒前
Smiling完成签到 ,获得积分10
1分钟前
吴彦祖的通通完成签到 ,获得积分10
1分钟前
zzzy完成签到 ,获得积分10
1分钟前
xianyaoz完成签到 ,获得积分0
1分钟前
CAOHOU应助自然的梦松采纳,获得10
1分钟前
年少丶完成签到,获得积分10
1分钟前
研友_ngX12Z完成签到 ,获得积分10
1分钟前
1分钟前
香蕉觅云应助Doctor采纳,获得10
1分钟前
zzz完成签到,获得积分20
1分钟前
1分钟前
zzz发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994886
求助须知:如何正确求助?哪些是违规求助? 3535036
关于积分的说明 11267028
捐赠科研通 3274824
什么是DOI,文献DOI怎么找? 1806478
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762