R‐MFE‐TCN: A correlation prediction model between body surface and tumor during respiratory movement

多元统计 相关性 计算机科学 稳健性(进化) 人工智能 特征(语言学) 模式识别(心理学) 超参数 数学 机器学习 几何学 生物化学 化学 语言学 哲学 基因
作者
Xuehu Wang,Yang Chang,Ziqi Liu,J. Zhang,Chao Xue,Li-Hong Xing,Yongchang Zheng,Chen Geng,Xiaoping Yin
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17183
摘要

Abstract Background 2D CT image‐guided radiofrequency ablation (RFA) is an exciting minimally invasive treatment that can destroy liver tumors without removing them. However, CT images can only provide limited static information, and the tumor will move with the patient's respiratory movement. Therefore, how to accurately locate tumors under free conditions is an urgent problem to be solved at present. Purpose The purpose of this study is to propose a respiratory correlation prediction model for mixed reality surgical assistance system, Riemannian and Multivariate Feature Enhanced Temporal Convolutional Network (R‐MFE‐TCN), and to achieve accurate respiratory correlation prediction. Methods The model adopts a respiration‐oriented Riemannian information enhancement strategy to expand the diversity of the dataset. A new Multivariate Feature Enhancement module (MFE) is proposed to retain respiratory data information, so that the network can fully explore the correlation of internal and external data information, the dual‐channel is used to retain multivariate respiratory feature, and the Multi‐headed Self‐attention obtains respiratory peak‐to‐valley value periodic information. This information significantly improves the prediction performance of the network. At the same time, the PSO algorithm is used for hyperparameter optimization. In the experiment, a total of seven patients' internal and external respiratory motion trajectories were obtained from the dataset, and the first six patients were selected as the training set. The respiratory signal collection frequency was 21 Hz. Results A large number of experiments on the dataset prove the good performance of this method, which improves the prediction accuracy while also having strong robustness. This method can reduce the delay deviation under long window prediction and achieve good performance. In the case of 400 ms, the average RMSE and MAE are 0.0453 and 0.0361 mm, respectively, which is better than other research methods. Conclusion The R‐MFE‐TCN can be extended to respiratory correlation prediction in different clinical situations, meeting the accuracy requirements for respiratory delay prediction in surgical assistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妖精完成签到 ,获得积分10
1秒前
方方完成签到 ,获得积分10
3秒前
Lesterem完成签到 ,获得积分10
9秒前
mike2012完成签到 ,获得积分10
11秒前
海孩子完成签到,获得积分10
12秒前
王一生完成签到,获得积分10
14秒前
雾霭迷茫完成签到 ,获得积分10
17秒前
幽默的小猫咪完成签到 ,获得积分10
17秒前
深情安青应助zhanlang采纳,获得10
18秒前
18秒前
粗犷的灵松完成签到 ,获得积分10
20秒前
三国杀校老弟完成签到,获得积分10
21秒前
alixy完成签到,获得积分10
21秒前
nusiew完成签到,获得积分10
22秒前
yehaidadao完成签到,获得积分10
30秒前
netyouxiang完成签到,获得积分10
37秒前
迅速千愁完成签到 ,获得积分10
38秒前
橙子完成签到,获得积分10
40秒前
安静严青完成签到 ,获得积分10
40秒前
slsdianzi完成签到,获得积分10
40秒前
allrubbish完成签到,获得积分10
41秒前
呆呆是一条鱼完成签到,获得积分10
42秒前
巴达天使完成签到,获得积分10
42秒前
铜豌豆完成签到 ,获得积分10
45秒前
santory完成签到,获得积分20
45秒前
时尚远山完成签到 ,获得积分10
49秒前
GGGGEEEE应助魔幻的妖丽采纳,获得10
56秒前
雪莉酒完成签到,获得积分10
1分钟前
甜甜千兰完成签到 ,获得积分10
1分钟前
qingxinhuo完成签到 ,获得积分10
1分钟前
木南大宝完成签到 ,获得积分10
1分钟前
aowulan完成签到 ,获得积分10
1分钟前
妖孽的二狗完成签到 ,获得积分10
1分钟前
黑黑黑完成签到,获得积分10
1分钟前
贪玩路灯完成签到,获得积分10
1分钟前
PM2555完成签到 ,获得积分10
1分钟前
zhangsan完成签到,获得积分10
1分钟前
魔幻的妖丽完成签到 ,获得积分10
1分钟前
1分钟前
Wei完成签到 ,获得积分10
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261670
求助须知:如何正确求助?哪些是违规求助? 2902535
关于积分的说明 8319851
捐赠科研通 2572345
什么是DOI,文献DOI怎么找? 1397564
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632305