R‐MFE‐TCN: A correlation prediction model between body surface and tumor during respiratory movement

多元统计 相关性 计算机科学 稳健性(进化) 人工智能 特征(语言学) 模式识别(心理学) 超参数 数学 机器学习 几何学 语言学 生物化学 基因 哲学 化学
作者
Xuehu Wang,Yang Chang,Ziqi Liu,J. Zhang,Chao Xue,Li-Hong Xing,Yongchang Zheng,Chen Geng,Xiaoping Yin
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17183
摘要

Abstract Background 2D CT image‐guided radiofrequency ablation (RFA) is an exciting minimally invasive treatment that can destroy liver tumors without removing them. However, CT images can only provide limited static information, and the tumor will move with the patient's respiratory movement. Therefore, how to accurately locate tumors under free conditions is an urgent problem to be solved at present. Purpose The purpose of this study is to propose a respiratory correlation prediction model for mixed reality surgical assistance system, Riemannian and Multivariate Feature Enhanced Temporal Convolutional Network (R‐MFE‐TCN), and to achieve accurate respiratory correlation prediction. Methods The model adopts a respiration‐oriented Riemannian information enhancement strategy to expand the diversity of the dataset. A new Multivariate Feature Enhancement module (MFE) is proposed to retain respiratory data information, so that the network can fully explore the correlation of internal and external data information, the dual‐channel is used to retain multivariate respiratory feature, and the Multi‐headed Self‐attention obtains respiratory peak‐to‐valley value periodic information. This information significantly improves the prediction performance of the network. At the same time, the PSO algorithm is used for hyperparameter optimization. In the experiment, a total of seven patients' internal and external respiratory motion trajectories were obtained from the dataset, and the first six patients were selected as the training set. The respiratory signal collection frequency was 21 Hz. Results A large number of experiments on the dataset prove the good performance of this method, which improves the prediction accuracy while also having strong robustness. This method can reduce the delay deviation under long window prediction and achieve good performance. In the case of 400 ms, the average RMSE and MAE are 0.0453 and 0.0361 mm, respectively, which is better than other research methods. Conclusion The R‐MFE‐TCN can be extended to respiratory correlation prediction in different clinical situations, meeting the accuracy requirements for respiratory delay prediction in surgical assistance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术虾米完成签到 ,获得积分10
1秒前
zill完成签到,获得积分10
1秒前
我不到啊完成签到,获得积分10
2秒前
浅浅依云完成签到,获得积分10
2秒前
纯真忆秋发布了新的文献求助10
3秒前
科研通AI6应助Ethan采纳,获得10
4秒前
坐以待币完成签到 ,获得积分10
4秒前
田浩发布了新的文献求助10
6秒前
7秒前
Louao发布了新的文献求助30
7秒前
老小孩完成签到 ,获得积分10
8秒前
9秒前
完美世界应助熊国开采纳,获得10
10秒前
Lny应助肉肉采纳,获得30
10秒前
12秒前
彭于晏应助激动的爆米花采纳,获得10
12秒前
fyp发布了新的文献求助10
13秒前
江漓完成签到 ,获得积分10
14秒前
17秒前
17秒前
ph发布了新的文献求助10
17秒前
18秒前
jason发布了新的文献求助10
20秒前
ceeray23应助田浩采纳,获得10
20秒前
科研通AI6应助风清扬采纳,获得10
22秒前
GuMingyang完成签到,获得积分10
23秒前
秦可可发布了新的文献求助10
24秒前
熊国开发布了新的文献求助10
25秒前
25秒前
李爱国应助虚心的清采纳,获得10
27秒前
Aura完成签到,获得积分10
27秒前
kento完成签到,获得积分0
29秒前
vivian发布了新的文献求助10
31秒前
Hmbb完成签到,获得积分10
31秒前
自信书文完成签到 ,获得积分10
31秒前
Stove完成签到,获得积分10
32秒前
32秒前
comma完成签到,获得积分10
34秒前
秦可可完成签到,获得积分10
36秒前
Ava应助vivian采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565531
求助须知:如何正确求助?哪些是违规求助? 4650613
关于积分的说明 14691991
捐赠科研通 4592552
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492065
关于科研通互助平台的介绍 1463281