R‐MFE‐TCN: A correlation prediction model between body surface and tumor during respiratory movement

多元统计 相关性 计算机科学 稳健性(进化) 人工智能 特征(语言学) 模式识别(心理学) 超参数 数学 机器学习 几何学 生物化学 化学 语言学 哲学 基因
作者
Xuehu Wang,Yang Chang,Ziqi Liu,J. Zhang,Chao Xue,Li-Hong Xing,Yongchang Zheng,Chen Geng,Xiaoping Yin
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17183
摘要

Abstract Background 2D CT image‐guided radiofrequency ablation (RFA) is an exciting minimally invasive treatment that can destroy liver tumors without removing them. However, CT images can only provide limited static information, and the tumor will move with the patient's respiratory movement. Therefore, how to accurately locate tumors under free conditions is an urgent problem to be solved at present. Purpose The purpose of this study is to propose a respiratory correlation prediction model for mixed reality surgical assistance system, Riemannian and Multivariate Feature Enhanced Temporal Convolutional Network (R‐MFE‐TCN), and to achieve accurate respiratory correlation prediction. Methods The model adopts a respiration‐oriented Riemannian information enhancement strategy to expand the diversity of the dataset. A new Multivariate Feature Enhancement module (MFE) is proposed to retain respiratory data information, so that the network can fully explore the correlation of internal and external data information, the dual‐channel is used to retain multivariate respiratory feature, and the Multi‐headed Self‐attention obtains respiratory peak‐to‐valley value periodic information. This information significantly improves the prediction performance of the network. At the same time, the PSO algorithm is used for hyperparameter optimization. In the experiment, a total of seven patients' internal and external respiratory motion trajectories were obtained from the dataset, and the first six patients were selected as the training set. The respiratory signal collection frequency was 21 Hz. Results A large number of experiments on the dataset prove the good performance of this method, which improves the prediction accuracy while also having strong robustness. This method can reduce the delay deviation under long window prediction and achieve good performance. In the case of 400 ms, the average RMSE and MAE are 0.0453 and 0.0361 mm, respectively, which is better than other research methods. Conclusion The R‐MFE‐TCN can be extended to respiratory correlation prediction in different clinical situations, meeting the accuracy requirements for respiratory delay prediction in surgical assistance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Baywreath完成签到,获得积分10
2秒前
竹筏过海应助Lei采纳,获得30
2秒前
马皓发布了新的文献求助10
2秒前
3秒前
田字格发布了新的文献求助10
4秒前
北极星发布了新的文献求助10
5秒前
6秒前
南原给南原的求助进行了留言
6秒前
7秒前
Wenjian7761完成签到,获得积分10
7秒前
缪缪发布了新的文献求助10
9秒前
老实的石头完成签到,获得积分10
9秒前
小吴同学发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
腼腆的若雁完成签到,获得积分10
13秒前
13秒前
fuiee发布了新的文献求助10
13秒前
小开心完成签到,获得积分10
13秒前
北极星完成签到,获得积分10
14秒前
cccc完成签到 ,获得积分10
14秒前
15秒前
Dogged完成签到 ,获得积分10
16秒前
耶啵耶啵完成签到 ,获得积分10
17秒前
mentality完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
18秒前
VDC应助机智寻雪采纳,获得30
18秒前
18秒前
jack_kunn发布了新的文献求助30
19秒前
20秒前
20秒前
田様应助linkman采纳,获得10
20秒前
zik完成签到 ,获得积分10
21秒前
汉堡包应助纷飞漫天寂寥采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714