Transformer fault identification method based on GASF‐AlexNet‐MSA transfer learning

变压器 计算机科学 溶解气体分析 电网 特征提取 网格 人工智能 模式识别(心理学) 变压器油 工程类 功率(物理) 电气工程 物理 电压 几何学 量子力学 数学
作者
Xin Zhang,Kaiyue Yang,Lei Jia
出处
期刊:International Journal of Circuit Theory and Applications [Wiley]
标识
DOI:10.1002/cta.4218
摘要

Abstract The transformer is an important part of the power system and ensures the stable operation of the power grid and electricity safety key equipment. With the increase in electricity demand, it is of great significance to ensure the safe and reliable operation of transformers. However, the commonly used dissolved gas analysis (DGA) method in oil for transformer fault identification has significant drawbacks, so this paper proposes a transformer fault identification method based on GASF‐AlexNet‐MSA transfer learning. The use of GASF to convert one‐dimensional dissolved gas analysis (DGA) data into two‐dimensional images, thus enhancing the comprehensiveness of data representation; the utilization of a pre‐trained AlexNet model through transfer learning, which enables the method to efficiently extract complex features such as textures, shapes, and edges; and the introduction of multiple self‐attention mechanisms that further refine the feature extraction and focuses on the key features, thereby improving the accuracy of fault identification. The proposed model achieves a remarkable accuracy of 97.04% on the publicly DGA dataset, which is 5.19% higher than AlexNet, 6.48% higher than VGG16, 6.12% higher than GoogLeNet, 2.41% higher than ResNet, and 3.71% higher than MobileNet. These results underscore the model's strong feature extraction capabilities and its superior performance in transformer fault identification, providing a valuable reference for enhancing the reliability and safety of power systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
撒西不理发布了新的文献求助10
1秒前
粱涵易发布了新的文献求助10
2秒前
听书人发布了新的文献求助10
5秒前
Orange应助Jrssion采纳,获得10
5秒前
科研通AI2S应助Jrssion采纳,获得10
5秒前
8秒前
ccy完成签到 ,获得积分10
10秒前
情怀应助小赵sci采纳,获得10
10秒前
wszl发布了新的文献求助10
10秒前
zym999999发布了新的文献求助10
11秒前
默默安双完成签到 ,获得积分10
13秒前
一拳超人完成签到 ,获得积分10
14秒前
zho发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助100
15秒前
haocong完成签到 ,获得积分10
19秒前
LNN完成签到,获得积分10
20秒前
20秒前
zhangweny完成签到,获得积分10
20秒前
22秒前
康康发布了新的文献求助10
24秒前
26秒前
小赵sci发布了新的文献求助10
26秒前
sx发布了新的文献求助20
27秒前
听书人完成签到,获得积分10
27秒前
xiangyiyi发布了新的文献求助10
27秒前
撒西不理完成签到 ,获得积分10
28秒前
zzcres发布了新的文献求助10
29秒前
30秒前
傲娇蓝血完成签到,获得积分10
30秒前
撒西不理关注了科研通微信公众号
32秒前
胡胡胡完成签到 ,获得积分10
35秒前
35秒前
科研小白完成签到,获得积分10
36秒前
Jasper应助冷酷的风华采纳,获得10
37秒前
zzz完成签到,获得积分10
37秒前
铁观音发布了新的文献求助10
39秒前
斯文败类应助玛卡巴卡采纳,获得10
40秒前
丘比特应助科研通管家采纳,获得10
40秒前
dinghaifeng应助科研通管家采纳,获得10
40秒前
温冰雪应助科研通管家采纳,获得10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511