亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fine-tuning Large Language Models to Improve Accuracy and Comprehensibility of Automated Code Review

计算机科学 软件工程 程序设计语言 编码(集合论) 集合(抽象数据类型)
作者
Yongda Yu,Guoping Rong,Haifeng Shen,He Zhang,Dong Shao,Min Wang,Wei Zhao,Yong Xu,Juhong Wang
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
标识
DOI:10.1145/3695993
摘要

As code review is a tedious and costly software quality practice, researchers have proposed several machine learning-based methods to automate the process. The primary focus has been on accuracy, that is, how accurately the algorithms are able to detect issues in the code under review. However, human intervention still remains inevitable since results produced by automated code review are not 100% correct. To assist human reviewers in making their final decisions on automatically generated review comments, the comprehensibility of the comments underpinned by accurate localization and relevant explanations for the detected issues with repair suggestions is paramount. However, this has largely been neglected in the existing research. Large language models (LLMs) have the potential to generate code review comments that are more readable and comprehensible by humans thanks to their remarkable processing and reasoning capabilities. However, even mainstream LLMs perform poorly in detecting the presence of code issues because they have not been specifically trained for this binary classification task required in code review. In this paper, we contribute Carllm (Comprehensibility of Automated Code Review using Large Language Models), a novel fine-tuned LLM that has the ability to improve not only the accuracy but, more importantly, the comprehensibility of automated code review, as compared to state-of-the-art pre-trained models and general LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
休斯顿完成签到,获得积分10
4秒前
6秒前
8秒前
10秒前
没有昵称发布了新的文献求助10
13秒前
wanci应助小明明采纳,获得10
13秒前
ZJakariae发布了新的文献求助10
14秒前
ljlwh完成签到 ,获得积分10
30秒前
Jasper应助没有昵称采纳,获得10
31秒前
35秒前
传奇3应助七彩墨色鱼采纳,获得10
39秒前
elliotzzz发布了新的文献求助30
39秒前
浮游应助大气凝云采纳,获得10
48秒前
ZJakariae完成签到,获得积分10
50秒前
Anthonywll完成签到 ,获得积分10
1分钟前
1分钟前
可爱的函函应助lac813采纳,获得10
1分钟前
1分钟前
火星上的山河完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
彭于晏应助天真千易采纳,获得10
1分钟前
闪闪小小完成签到 ,获得积分10
1分钟前
1分钟前
上官若男应助李亚宁采纳,获得10
1分钟前
1分钟前
1分钟前
嘻嘻哈哈应助大气凝云采纳,获得10
1分钟前
天真千易发布了新的文献求助10
1分钟前
luxiang发布了新的文献求助10
1分钟前
1分钟前
呼安完成签到,获得积分10
1分钟前
2分钟前
cheese发布了新的文献求助10
2分钟前
橘橘橘子皮完成签到 ,获得积分10
2分钟前
LJL完成签到 ,获得积分10
2分钟前
华仔应助HXZ采纳,获得30
2分钟前
SciGPT应助Aulorra采纳,获得10
2分钟前
深情安青应助科研小白采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171650
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164