Fine-tuning Large Language Models to Improve Accuracy and Comprehensibility of Automated Code Review

计算机科学 软件工程 程序设计语言 编码(集合论) 集合(抽象数据类型)
作者
Yongda Yu,Guoping Rong,Haifeng Shen,He Zhang,Dong Shao,Min Wang,Wei Zhao,Yong Xu,Juhong Wang
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
标识
DOI:10.1145/3695993
摘要

As code review is a tedious and costly software quality practice, researchers have proposed several machine learning-based methods to automate the process. The primary focus has been on accuracy, that is, how accurately the algorithms are able to detect issues in the code under review. However, human intervention still remains inevitable since results produced by automated code review are not 100% correct. To assist human reviewers in making their final decisions on automatically generated review comments, the comprehensibility of the comments underpinned by accurate localization and relevant explanations for the detected issues with repair suggestions is paramount. However, this has largely been neglected in the existing research. Large language models (LLMs) have the potential to generate code review comments that are more readable and comprehensible by humans thanks to their remarkable processing and reasoning capabilities. However, even mainstream LLMs perform poorly in detecting the presence of code issues because they have not been specifically trained for this binary classification task required in code review. In this paper, we contribute Carllm (Comprehensibility of Automated Code Review using Large Language Models), a novel fine-tuned LLM that has the ability to improve not only the accuracy but, more importantly, the comprehensibility of automated code review, as compared to state-of-the-art pre-trained models and general LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123lx完成签到,获得积分10
刚刚
karyoter完成签到,获得积分10
刚刚
1秒前
彭于晏应助Ruby采纳,获得10
1秒前
1秒前
1秒前
1秒前
FashionBoy应助稀里哗啦采纳,获得10
2秒前
CertainRiv完成签到,获得积分10
2秒前
时567完成签到,获得积分10
2秒前
最佳发布了新的文献求助30
2秒前
Frank应助胡浮浮采纳,获得10
2秒前
2秒前
混合结构完成签到 ,获得积分10
2秒前
852应助LOWRY采纳,获得10
2秒前
yin发布了新的文献求助30
3秒前
MZY发布了新的文献求助10
3秒前
NexusExplorer应助lhy采纳,获得10
4秒前
啤酒人发布了新的文献求助20
4秒前
包容的靖琪完成签到,获得积分10
4秒前
4秒前
5秒前
斯文败类应助澳大利亚采纳,获得10
5秒前
烟花应助温婉采纳,获得10
5秒前
慕容飞凤完成签到,获得积分10
5秒前
科研通AI6应助栀子采纳,获得10
6秒前
6秒前
tlotw41发布了新的文献求助10
6秒前
暂无发布了新的文献求助10
6秒前
7秒前
1015508201发布了新的文献求助10
7秒前
9秒前
10秒前
11秒前
万能图书馆应助mayounaizi14采纳,获得10
11秒前
123发布了新的文献求助10
11秒前
源源发布了新的文献求助10
11秒前
infinito应助机智博涛采纳,获得10
12秒前
大方从阳完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434707
求助须知:如何正确求助?哪些是违规求助? 4547028
关于积分的说明 14205727
捐赠科研通 4467036
什么是DOI,文献DOI怎么找? 2448402
邀请新用户注册赠送积分活动 1439329
关于科研通互助平台的介绍 1416068