Fine-tuning Large Language Models to Improve Accuracy and Comprehensibility of Automated Code Review

计算机科学 软件工程 程序设计语言 编码(集合论) 集合(抽象数据类型)
作者
Yongda Yu,Guoping Rong,Haifeng Shen,He Zhang,Dong Shao,Min Wang,Wei Zhao,Yong Xu,Juhong Wang
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
标识
DOI:10.1145/3695993
摘要

As code review is a tedious and costly software quality practice, researchers have proposed several machine learning-based methods to automate the process. The primary focus has been on accuracy, that is, how accurately the algorithms are able to detect issues in the code under review. However, human intervention still remains inevitable since results produced by automated code review are not 100% correct. To assist human reviewers in making their final decisions on automatically generated review comments, the comprehensibility of the comments underpinned by accurate localization and relevant explanations for the detected issues with repair suggestions is paramount. However, this has largely been neglected in the existing research. Large language models (LLMs) have the potential to generate code review comments that are more readable and comprehensible by humans thanks to their remarkable processing and reasoning capabilities. However, even mainstream LLMs perform poorly in detecting the presence of code issues because they have not been specifically trained for this binary classification task required in code review. In this paper, we contribute Carllm (Comprehensibility of Automated Code Review using Large Language Models), a novel fine-tuned LLM that has the ability to improve not only the accuracy but, more importantly, the comprehensibility of automated code review, as compared to state-of-the-art pre-trained models and general LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
依霏完成签到,获得积分10
刚刚
lililili完成签到,获得积分10
1秒前
华彬心完成签到,获得积分10
2秒前
YujieJin完成签到,获得积分10
2秒前
wanghuu发布了新的文献求助10
2秒前
3秒前
之南完成签到,获得积分10
3秒前
doskkk完成签到,获得积分10
4秒前
lililili发布了新的文献求助10
5秒前
大模型应助欢喜大地采纳,获得10
5秒前
5秒前
科研通AI2S应助旷野采纳,获得10
6秒前
乐乐应助落花生采纳,获得10
7秒前
华彬心发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
赘婿应助沉静的煎蛋采纳,获得10
8秒前
weed6完成签到,获得积分10
8秒前
李健应助快乐访蕊采纳,获得10
9秒前
包容友儿发布了新的文献求助10
9秒前
鱿鱼完成签到,获得积分10
9秒前
现代的妍完成签到,获得积分10
9秒前
10秒前
孙亚博完成签到,获得积分10
10秒前
阿良完成签到,获得积分10
10秒前
唐泽雪穗应助米忧伤基罗采纳,获得10
12秒前
田様应助米忧伤基罗采纳,获得10
12秒前
孙亚博发布了新的文献求助10
15秒前
yx完成签到,获得积分10
15秒前
Carina7684发布了新的文献求助30
17秒前
桐桐应助欣嫩谷采纳,获得10
17秒前
yyyy完成签到,获得积分10
17秒前
打打应助笨笨的鬼神采纳,获得10
19秒前
一颗小洋葱完成签到 ,获得积分10
21秒前
21秒前
doskkk关注了科研通微信公众号
22秒前
君君完成签到,获得积分10
23秒前
23秒前
叶潭完成签到,获得积分10
24秒前
CHENXIN532完成签到,获得积分10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142528
求助须知:如何正确求助?哪些是违规求助? 4340819
关于积分的说明 13518240
捐赠科研通 4180740
什么是DOI,文献DOI怎么找? 2292579
邀请新用户注册赠送积分活动 1293245
关于科研通互助平台的介绍 1235752