Fine-tuning Large Language Models to Improve Accuracy and Comprehensibility of Automated Code Review

计算机科学 软件工程 程序设计语言 编码(集合论) 集合(抽象数据类型)
作者
Yongda Yu,Guoping Rong,Haifeng Shen,He Zhang,Dong Shao,Min Wang,Wei Zhao,Yong Xu,Juhong Wang
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
标识
DOI:10.1145/3695993
摘要

As code review is a tedious and costly software quality practice, researchers have proposed several machine learning-based methods to automate the process. The primary focus has been on accuracy, that is, how accurately the algorithms are able to detect issues in the code under review. However, human intervention still remains inevitable since results produced by automated code review are not 100% correct. To assist human reviewers in making their final decisions on automatically generated review comments, the comprehensibility of the comments underpinned by accurate localization and relevant explanations for the detected issues with repair suggestions is paramount. However, this has largely been neglected in the existing research. Large language models (LLMs) have the potential to generate code review comments that are more readable and comprehensible by humans thanks to their remarkable processing and reasoning capabilities. However, even mainstream LLMs perform poorly in detecting the presence of code issues because they have not been specifically trained for this binary classification task required in code review. In this paper, we contribute Carllm (Comprehensibility of Automated Code Review using Large Language Models), a novel fine-tuned LLM that has the ability to improve not only the accuracy but, more importantly, the comprehensibility of automated code review, as compared to state-of-the-art pre-trained models and general LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hilda007发布了新的文献求助10
刚刚
Orange应助zuyy5采纳,获得10
刚刚
顾矜应助LYF采纳,获得10
刚刚
2秒前
3秒前
3秒前
3秒前
毛毛完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
酷酷盼烟完成签到,获得积分10
6秒前
搜集达人应助yht18893912614采纳,获得10
6秒前
聪慧的从雪完成签到 ,获得积分10
6秒前
明明发布了新的文献求助30
7秒前
好好发布了新的文献求助10
8秒前
华仔应助jjsss采纳,获得10
9秒前
深情安青应助明芬采纳,获得10
9秒前
10秒前
10秒前
王一琳发布了新的文献求助10
10秒前
小张发布了新的文献求助10
12秒前
13秒前
13秒前
社会议和发布了新的文献求助10
14秒前
jjsss完成签到,获得积分10
14秒前
15秒前
JamesPei应助一个饼采纳,获得30
15秒前
16秒前
明明完成签到,获得积分10
16秒前
CodeCraft应助小马采纳,获得10
17秒前
夏自完成签到,获得积分10
17秒前
黎明之光发布了新的文献求助20
18秒前
otaro发布了新的文献求助10
18秒前
chenjun7080发布了新的文献求助10
19秒前
19秒前
一顿三大碗完成签到,获得积分10
20秒前
夏自发布了新的文献求助10
20秒前
21秒前
zZoeE发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308276
求助须知:如何正确求助?哪些是违规求助? 4453483
关于积分的说明 13857227
捐赠科研通 4341210
什么是DOI,文献DOI怎么找? 2383705
邀请新用户注册赠送积分活动 1378353
关于科研通互助平台的介绍 1346311