亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fine-tuning Large Language Models to Improve Accuracy and Comprehensibility of Automated Code Review

计算机科学 软件工程 程序设计语言 编码(集合论) 集合(抽象数据类型)
作者
Yongda Yu,Guoping Rong,Haifeng Shen,He Zhang,Dong Shao,Min Wang,Wei Zhao,Yong Xu,Juhong Wang
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
标识
DOI:10.1145/3695993
摘要

As code review is a tedious and costly software quality practice, researchers have proposed several machine learning-based methods to automate the process. The primary focus has been on accuracy, that is, how accurately the algorithms are able to detect issues in the code under review. However, human intervention still remains inevitable since results produced by automated code review are not 100% correct. To assist human reviewers in making their final decisions on automatically generated review comments, the comprehensibility of the comments underpinned by accurate localization and relevant explanations for the detected issues with repair suggestions is paramount. However, this has largely been neglected in the existing research. Large language models (LLMs) have the potential to generate code review comments that are more readable and comprehensible by humans thanks to their remarkable processing and reasoning capabilities. However, even mainstream LLMs perform poorly in detecting the presence of code issues because they have not been specifically trained for this binary classification task required in code review. In this paper, we contribute Carllm (Comprehensibility of Automated Code Review using Large Language Models), a novel fine-tuned LLM that has the ability to improve not only the accuracy but, more importantly, the comprehensibility of automated code review, as compared to state-of-the-art pre-trained models and general LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白衣渡姜完成签到,获得积分10
刚刚
wd发布了新的文献求助10
1秒前
祁风完成签到 ,获得积分10
4秒前
王饱饱完成签到 ,获得积分10
8秒前
迷你的靖雁完成签到,获得积分10
12秒前
13秒前
李健完成签到,获得积分10
20秒前
糖伯虎完成签到 ,获得积分10
27秒前
乐乐应助wd采纳,获得10
28秒前
37秒前
周肆完成签到 ,获得积分10
39秒前
余念安完成签到 ,获得积分10
41秒前
pK完成签到 ,获得积分10
48秒前
49秒前
CC发布了新的文献求助10
49秒前
小邸应助科研通管家采纳,获得10
53秒前
坦率白萱应助科研通管家采纳,获得10
53秒前
爆米花应助科研通管家采纳,获得150
53秒前
小邸应助科研通管家采纳,获得10
53秒前
JamesPei应助科研通管家采纳,获得10
53秒前
小邸应助科研通管家采纳,获得10
53秒前
伯云完成签到,获得积分10
1分钟前
Jiayi完成签到 ,获得积分10
1分钟前
健忘幻儿完成签到 ,获得积分10
1分钟前
李顺利完成签到 ,获得积分10
1分钟前
1分钟前
CC完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
cc完成签到,获得积分10
1分钟前
万能图书馆应助草莓酱采纳,获得10
1分钟前
1分钟前
sino-ft完成签到,获得积分10
1分钟前
dovejingling完成签到,获得积分10
2分钟前
2分钟前
点心完成签到,获得积分10
2分钟前
zwl发布了新的文献求助10
2分钟前
Jim发布了新的文献求助30
2分钟前
有趣的银完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581559
求助须知:如何正确求助?哪些是违规求助? 3999491
关于积分的说明 12381352
捐赠科研通 3674182
什么是DOI,文献DOI怎么找? 2024857
邀请新用户注册赠送积分活动 1058733
科研通“疑难数据库(出版商)”最低求助积分说明 945497