Fine-tuning Large Language Models to Improve Accuracy and Comprehensibility of Automated Code Review

计算机科学 软件工程 程序设计语言 编码(集合论) 集合(抽象数据类型)
作者
Yongda Yu,Guoping Rong,Haifeng Shen,He Zhang,Dong Shao,Min Wang,Wei Zhao,Yong Xu,Juhong Wang
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
标识
DOI:10.1145/3695993
摘要

As code review is a tedious and costly software quality practice, researchers have proposed several machine learning-based methods to automate the process. The primary focus has been on accuracy, that is, how accurately the algorithms are able to detect issues in the code under review. However, human intervention still remains inevitable since results produced by automated code review are not 100% correct. To assist human reviewers in making their final decisions on automatically generated review comments, the comprehensibility of the comments underpinned by accurate localization and relevant explanations for the detected issues with repair suggestions is paramount. However, this has largely been neglected in the existing research. Large language models (LLMs) have the potential to generate code review comments that are more readable and comprehensible by humans thanks to their remarkable processing and reasoning capabilities. However, even mainstream LLMs perform poorly in detecting the presence of code issues because they have not been specifically trained for this binary classification task required in code review. In this paper, we contribute Carllm (Comprehensibility of Automated Code Review using Large Language Models), a novel fine-tuned LLM that has the ability to improve not only the accuracy but, more importantly, the comprehensibility of automated code review, as compared to state-of-the-art pre-trained models and general LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小番茄完成签到,获得积分10
刚刚
阿Q发布了新的文献求助10
刚刚
吴wu发布了新的文献求助30
1秒前
楓秋完成签到 ,获得积分10
1秒前
起风了完成签到,获得积分10
1秒前
qqqqqqy完成签到,获得积分10
2秒前
2秒前
2秒前
华仔应助王焕玉采纳,获得10
2秒前
顾矜应助hubanj采纳,获得30
3秒前
旺旺大礼包完成签到,获得积分10
3秒前
HYH发布了新的文献求助10
4秒前
爱笑的蛟凤完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
siyu完成签到,获得积分10
7秒前
7秒前
7秒前
avalanche应助李嘉图的栗子采纳,获得50
7秒前
8秒前
我们发布了新的文献求助10
8秒前
8秒前
8秒前
情怀应助Huan采纳,获得10
8秒前
9秒前
dd36发布了新的文献求助10
9秒前
chengmin发布了新的文献求助10
9秒前
9秒前
wu发布了新的文献求助10
9秒前
司空元正发布了新的文献求助10
10秒前
11秒前
天空之下完成签到,获得积分10
11秒前
刘欣悦完成签到 ,获得积分10
12秒前
一一发布了新的文献求助10
12秒前
siyu发布了新的文献求助10
12秒前
唯意完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939