Real-Time Prediction of Resident ADL Using Edge-Based Time-Series Ambient Sound Recognition

环境噪声级 计算机科学 日常生活活动 活动识别 噪音(视频) 可穿戴计算机 辅助生活 光学(聚焦) GSM演进的增强数据速率 实时计算 服务器 云计算 人机交互 声音(地理) 人工智能 嵌入式系统 万维网 物理 地质学 医学 心理学 护理部 地貌学 精神科 光学 图像(数学) 操作系统
作者
Cheolhwan Lee,Ahhyun Yuh,Soon Ju Kang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (19): 6435-6435
标识
DOI:10.3390/s24196435
摘要

To create an effective Ambient Assisted Living (AAL) system that supports the daily activities of patients or the elderly, it is crucial to accurately detect and differentiate user actions to determine the necessary assistance. Traditional intrusive methods, such as wearable or object-attached devices, can interfere with the natural behavior of patients and may lead to resistance. Furthermore, non-intrusive systems that rely on video or sound data processed by servers or the cloud can generate excessive data traffic and raise concerns about the security of personal information. In this study, we developed an edge-based real-time system for detecting Activities of Daily Living (ADL) using ambient noise. Additionally, we introduced an online post-processing method to enhance classification performance and extract activity events from noisy sound in resource-constrained environments. The system, tested with data collected in a living space, achieved high accuracy in classifying ADL-related behaviors in continuous events and successfully generated user activity logs from time-series sound data, enabling further analyses such as ADL assessments. Future work will focus on enhancing detection accuracy and expanding the range of detectable behaviors by integrating the activity logs generated in this study with additional data sources beyond sound.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
俊逸亦云完成签到,获得积分10
5秒前
清脆的书桃完成签到,获得积分10
5秒前
华仔应助活力小熊猫采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
研友_ngqoE8完成签到,获得积分10
6秒前
桐桐应助云_123采纳,获得10
7秒前
9秒前
一二发布了新的文献求助10
9秒前
Ava应助击飞采纳,获得10
12秒前
科研66666发布了新的文献求助10
16秒前
sxd20103316完成签到,获得积分10
16秒前
wwz应助俊逸亦云采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825