Using Machine Learning to Identify Environmental Factors that Collectively Determine Microbial Community Structure of Activated Sludge

活性污泥 微生物种群生物学 环境科学 计算机科学 生化工程 环境工程 生物 细菌 工程类 污水处理 遗传学
作者
Lu Wang,Weilai Lu,Yang Song,Shuang‐Jiang Liu,Yu Fu
出处
期刊:Environmental Research [Elsevier BV]
卷期号:260: 119635-119635 被引量:1
标识
DOI:10.1016/j.envres.2024.119635
摘要

Activated sludge (AS) microbial communities are influenced by various environmental variables. However, a comprehensive analysis of how these variables jointly and nonlinearly shape the AS microbial community remains challenging. In this study, we employed advanced machine learning techniques to elucidate the collective effects of environmental variables on the structure and function of AS microbial communities. Applying Dirichlet Multinomial Mixtures analysis to 311 global AS samples, we identified four distinct microbial community types (AS-types), each characterized by unique microbial compositions and metabolic profiles. We used 14 classical linear and nonlinear machine learning methods to select a baseline model. The Extremely Randomized Trees demonstrated optimal performance in learning the relationship between environmental factors and AS types (with an accuracy of 71.43%). Feature selection identified critical environmental factors and their importance rankings, including latitude (Lat), longitude (Long), precipitation during sampling (Precip), solids retention time (SRT), effluent total nitrogen (Effluent TN), average temperature during sampling month (Avg Temp), mixed liquor temperature (Mixed Temp), influent biochemical oxygen demand (Influent BOD), and annual precipitation (Annual Precip). Significantly, Lat, Long, Precip, Avg Temp, and Annual Precip, influenced metabolic variations among AS types. These findings emphasize the pivotal role of environmental variables in shaping microbial community structures and enhancing metabolic pathways within activated sludge. Our study encourages the application of machine learning techniques to design artificial activated sludge microbial communities for specific environmental purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助帅气的璎采纳,获得10
1秒前
桐月十六发布了新的文献求助10
2秒前
学必困完成签到 ,获得积分10
2秒前
4秒前
齐佑龙发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
feedyoursoul完成签到,获得积分10
5秒前
优秀的莹完成签到,获得积分10
6秒前
Kang完成签到,获得积分10
6秒前
greenlu完成签到,获得积分10
8秒前
9秒前
Akim应助feedyoursoul采纳,获得10
10秒前
英俊白莲发布了新的文献求助10
10秒前
清脆水卉完成签到,获得积分10
11秒前
齐佑龙完成签到,获得积分10
11秒前
13秒前
14秒前
zxx完成签到 ,获得积分10
14秒前
moon完成签到,获得积分10
14秒前
KinoFreeze完成签到 ,获得积分10
14秒前
yydragen应助yyy采纳,获得40
15秒前
我是老大应助yyy采纳,获得20
15秒前
烟花应助yyy采纳,获得20
15秒前
情怀应助yyy采纳,获得20
15秒前
孙燕应助英俊白莲采纳,获得80
15秒前
上官若男应助yyy采纳,获得30
15秒前
桐桐应助yyy采纳,获得20
15秒前
vin应助yyy采纳,获得20
15秒前
vin应助yyy采纳,获得20
15秒前
孙燕应助yyy采纳,获得20
15秒前
smalldesk完成签到,获得积分10
16秒前
16秒前
NexusExplorer应助萌萌采纳,获得10
17秒前
lihuahui发布了新的文献求助10
20秒前
汉堡包应助不安的紫翠采纳,获得10
20秒前
希望天下0贩的0应助Splaink采纳,获得10
21秒前
zzzz发布了新的文献求助20
21秒前
张叮当完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176