FD-CNN: A Frequency-Domain FPGA Acceleration Scheme for CNN-Based Image-Processing Applications

计算机科学 卷积神经网络 现场可编程门阵列 离散余弦变换 人工智能 Stratix公司 管道(软件) 图像处理 解码方法 计算机硬件 计算机视觉 算法 图像(数学) 程序设计语言
作者
Xiaoyang Wang,Zhe Zhou,Zhihang Yuan,Jingchen Zhu,Y. Cao,Yao Zhang,Kangrui Sun,Guangyu Sun
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:22 (6): 1-30 被引量:2
标识
DOI:10.1145/3559105
摘要

In the emerging edge-computing scenarios, FPGAs have been widely adopted to accelerate convolutional neural network (CNN)–based image-processing applications, such as image classification, object detection, and image segmentation, and so on. A standard image-processing pipeline first decodes the collected compressed images from Internet of Things (IoTs) to RGB data, then feeds them into CNN engines to compute the results. Previous works mainly focus on optimizing the CNN inference parts. However, we notice that on the popular ZYNQ FPGA platforms, image decoding can also become the bottleneck due to the poor performance of embedded ARM CPUs. Even with a hardware accelerator, the decoding operations still incur considerable latency. Moreover, conventional RGB-based CNNs have too few input channels at the first layer, which can hardly utilize the high parallelism of CNN engines and greatly slows down the network inference. To overcome these problems, in this article, we propose FD-CNN, a novel CNN accelerator leveraging the partial-decoding technique to accelerate CNNs directly in the frequency domain. Specifically, we omit the most time-consuming IDCT (Inverse Discrete Cosine Transform) operations of image decoding and directly feed the DCT coefficients (i.e., the frequency data) into CNNs. By this means, the image decoder can be greatly simplified. Moreover, compared to the RGB data, frequency data has a narrower input resolution but has 64× more channels. Such an input shape is more hardware friendly than RGB data and can substantially reduce the CNN inference time. We then systematically discuss the algorithm, architecture, and command set design of FD-CNN. To deal with the irregularity of different CNN applications, we propose an image-decoding-aware design-space exploration (DSE) workflow to optimize the pipeline. We further propose an early stopping strategy to tackle the time-consuming progressive JPEG decoding. Comprehensive experiments demonstrate that FD-CNN achieves, on average, 3.24×, 4.29× throughput improvement, 2.55×, 2.54× energy reduction and 2.38×, 2.58× lower latency on ZC-706 and ZCU-102 platforms, respectively, compared to the baseline image-processing pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小橘子发布了新的文献求助10
3秒前
wusuowei发布了新的文献求助10
3秒前
4秒前
淡定从凝发布了新的文献求助10
4秒前
捌贰陆柒完成签到 ,获得积分10
5秒前
小小肖发布了新的文献求助10
5秒前
研友_kng1r8完成签到,获得积分10
6秒前
8秒前
解语花应助曦阳采纳,获得30
8秒前
11秒前
生动日记本完成签到,获得积分10
12秒前
张又蓝完成签到,获得积分10
13秒前
13秒前
14秒前
呆萌冰绿完成签到,获得积分10
14秒前
潇洒的平松完成签到,获得积分10
14秒前
carrieschen完成签到,获得积分10
15秒前
CAOHOU应助llll采纳,获得10
15秒前
16秒前
whl发布了新的文献求助10
16秒前
充电宝应助carrieschen采纳,获得10
17秒前
小橘子发布了新的文献求助10
19秒前
19秒前
wucl1990发布了新的文献求助10
20秒前
20秒前
盒子给盒子的求助进行了留言
21秒前
尊敬的驳完成签到,获得积分10
22秒前
吕老黄发布了新的文献求助10
22秒前
23秒前
YI完成签到,获得积分10
23秒前
kecheng应助ww采纳,获得10
24秒前
南至发布了新的文献求助10
25秒前
檀芷恩完成签到,获得积分10
26秒前
所所应助糕手采纳,获得10
26秒前
零九二一完成签到,获得积分20
29秒前
CodeCraft应助LZS采纳,获得10
30秒前
30秒前
30秒前
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182