FD-CNN: A Frequency-Domain FPGA Acceleration Scheme for CNN-Based Image-Processing Applications

计算机科学 卷积神经网络 现场可编程门阵列 离散余弦变换 人工智能 Stratix公司 管道(软件) 图像处理 解码方法 计算机硬件 计算机视觉 算法 图像(数学) 程序设计语言
作者
Xiaoyang Wang,Zhe Zhou,Zhihang Yuan,Jingchen Zhu,Y. Cao,Yao Zhang,Kangrui Sun,Guangyu Sun
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:22 (6): 1-30 被引量:2
标识
DOI:10.1145/3559105
摘要

In the emerging edge-computing scenarios, FPGAs have been widely adopted to accelerate convolutional neural network (CNN)–based image-processing applications, such as image classification, object detection, and image segmentation, and so on. A standard image-processing pipeline first decodes the collected compressed images from Internet of Things (IoTs) to RGB data, then feeds them into CNN engines to compute the results. Previous works mainly focus on optimizing the CNN inference parts. However, we notice that on the popular ZYNQ FPGA platforms, image decoding can also become the bottleneck due to the poor performance of embedded ARM CPUs. Even with a hardware accelerator, the decoding operations still incur considerable latency. Moreover, conventional RGB-based CNNs have too few input channels at the first layer, which can hardly utilize the high parallelism of CNN engines and greatly slows down the network inference. To overcome these problems, in this article, we propose FD-CNN, a novel CNN accelerator leveraging the partial-decoding technique to accelerate CNNs directly in the frequency domain. Specifically, we omit the most time-consuming IDCT (Inverse Discrete Cosine Transform) operations of image decoding and directly feed the DCT coefficients (i.e., the frequency data) into CNNs. By this means, the image decoder can be greatly simplified. Moreover, compared to the RGB data, frequency data has a narrower input resolution but has 64× more channels. Such an input shape is more hardware friendly than RGB data and can substantially reduce the CNN inference time. We then systematically discuss the algorithm, architecture, and command set design of FD-CNN. To deal with the irregularity of different CNN applications, we propose an image-decoding-aware design-space exploration (DSE) workflow to optimize the pipeline. We further propose an early stopping strategy to tackle the time-consuming progressive JPEG decoding. Comprehensive experiments demonstrate that FD-CNN achieves, on average, 3.24×, 4.29× throughput improvement, 2.55×, 2.54× energy reduction and 2.38×, 2.58× lower latency on ZC-706 and ZCU-102 platforms, respectively, compared to the baseline image-processing pipelines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IIIris完成签到,获得积分10
刚刚
Lucas应助无语的千儿采纳,获得10
刚刚
英俊的铭应助zjiayouz采纳,获得10
1秒前
1秒前
Lucas应助山楂罐头冰冰凉采纳,获得10
2秒前
无花果应助辐睿采纳,获得10
2秒前
2秒前
4秒前
4秒前
4秒前
王伯文完成签到,获得积分20
4秒前
taybour完成签到,获得积分10
5秒前
5秒前
辣辣应助啊呜采纳,获得10
5秒前
5秒前
天空完成签到,获得积分20
6秒前
6秒前
xjyyy完成签到,获得积分10
6秒前
sai完成签到,获得积分10
6秒前
限量发布了新的文献求助10
7秒前
7秒前
芷云发布了新的文献求助10
7秒前
小杨完成签到,获得积分10
7秒前
zwhy完成签到,获得积分10
8秒前
8秒前
张杰发布了新的文献求助10
9秒前
pioneers完成签到,获得积分10
9秒前
马小跳发布了新的文献求助10
10秒前
SciGPT应助kk采纳,获得10
10秒前
李健的小迷弟应助可爱绮采纳,获得10
11秒前
HAL发布了新的文献求助10
11秒前
谨慎青亦发布了新的文献求助10
11秒前
自由元冬发布了新的文献求助10
11秒前
11秒前
贤惠的饼干完成签到,获得积分10
11秒前
江小苔发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
FashionBoy应助发顶刊采纳,获得50
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576645
求助须知:如何正确求助?哪些是违规求助? 4662026
关于积分的说明 14739107
捐赠科研通 4602583
什么是DOI,文献DOI怎么找? 2525877
邀请新用户注册赠送积分活动 1495813
关于科研通互助平台的介绍 1465448