FD-CNN: A Frequency-Domain FPGA Acceleration Scheme for CNN-Based Image-Processing Applications

计算机科学 卷积神经网络 现场可编程门阵列 离散余弦变换 人工智能 Stratix公司 管道(软件) 图像处理 解码方法 计算机硬件 计算机视觉 算法 图像(数学) 程序设计语言
作者
Xiaoyang Wang,Zhe Zhou,Zhihang Yuan,Jingchen Zhu,Y. Cao,Yao Zhang,Kangrui Sun,Guangyu Sun
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:22 (6): 1-30 被引量:2
标识
DOI:10.1145/3559105
摘要

In the emerging edge-computing scenarios, FPGAs have been widely adopted to accelerate convolutional neural network (CNN)–based image-processing applications, such as image classification, object detection, and image segmentation, and so on. A standard image-processing pipeline first decodes the collected compressed images from Internet of Things (IoTs) to RGB data, then feeds them into CNN engines to compute the results. Previous works mainly focus on optimizing the CNN inference parts. However, we notice that on the popular ZYNQ FPGA platforms, image decoding can also become the bottleneck due to the poor performance of embedded ARM CPUs. Even with a hardware accelerator, the decoding operations still incur considerable latency. Moreover, conventional RGB-based CNNs have too few input channels at the first layer, which can hardly utilize the high parallelism of CNN engines and greatly slows down the network inference. To overcome these problems, in this article, we propose FD-CNN, a novel CNN accelerator leveraging the partial-decoding technique to accelerate CNNs directly in the frequency domain. Specifically, we omit the most time-consuming IDCT (Inverse Discrete Cosine Transform) operations of image decoding and directly feed the DCT coefficients (i.e., the frequency data) into CNNs. By this means, the image decoder can be greatly simplified. Moreover, compared to the RGB data, frequency data has a narrower input resolution but has 64× more channels. Such an input shape is more hardware friendly than RGB data and can substantially reduce the CNN inference time. We then systematically discuss the algorithm, architecture, and command set design of FD-CNN. To deal with the irregularity of different CNN applications, we propose an image-decoding-aware design-space exploration (DSE) workflow to optimize the pipeline. We further propose an early stopping strategy to tackle the time-consuming progressive JPEG decoding. Comprehensive experiments demonstrate that FD-CNN achieves, on average, 3.24×, 4.29× throughput improvement, 2.55×, 2.54× energy reduction and 2.38×, 2.58× lower latency on ZC-706 and ZCU-102 platforms, respectively, compared to the baseline image-processing pipelines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气幻竹发布了新的文献求助10
刚刚
刚刚
刚刚
宽宽完成签到,获得积分10
刚刚
刘明发布了新的文献求助10
1秒前
幽默的太阳完成签到 ,获得积分10
1秒前
euphie发布了新的文献求助10
1秒前
1秒前
狂野世立完成签到,获得积分10
3秒前
久木完成签到,获得积分20
3秒前
3秒前
所所应助hvgjgfjhgjh采纳,获得10
4秒前
专注若蕊完成签到,获得积分10
4秒前
小二郎应助挖掘机采纳,获得10
4秒前
魔幻颜发布了新的文献求助10
4秒前
快乐的紫山完成签到 ,获得积分10
5秒前
5秒前
lalala发布了新的文献求助10
5秒前
多情新蕾发布了新的文献求助10
7秒前
Owen应助Shawn采纳,获得10
7秒前
7秒前
LY发布了新的文献求助10
8秒前
EwhenQ发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
VK2801发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
科研通AI6.1应助科研通管家采纳,获得100
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749652
求助须知:如何正确求助?哪些是违规求助? 5460000
关于积分的说明 15364278
捐赠科研通 4889098
什么是DOI,文献DOI怎么找? 2628929
邀请新用户注册赠送积分活动 1577176
关于科研通互助平台的介绍 1533851