FD-CNN: A Frequency-Domain FPGA Acceleration Scheme for CNN-Based Image-Processing Applications

计算机科学 卷积神经网络 现场可编程门阵列 离散余弦变换 人工智能 Stratix公司 管道(软件) 图像处理 解码方法 计算机硬件 计算机视觉 算法 图像(数学) 程序设计语言
作者
Xiaoyang Wang,Zhe Zhou,Zhihang Yuan,Jingchen Zhu,Y. Cao,Yao Zhang,Kangrui Sun,Guangyu Sun
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:22 (6): 1-30 被引量:2
标识
DOI:10.1145/3559105
摘要

In the emerging edge-computing scenarios, FPGAs have been widely adopted to accelerate convolutional neural network (CNN)–based image-processing applications, such as image classification, object detection, and image segmentation, and so on. A standard image-processing pipeline first decodes the collected compressed images from Internet of Things (IoTs) to RGB data, then feeds them into CNN engines to compute the results. Previous works mainly focus on optimizing the CNN inference parts. However, we notice that on the popular ZYNQ FPGA platforms, image decoding can also become the bottleneck due to the poor performance of embedded ARM CPUs. Even with a hardware accelerator, the decoding operations still incur considerable latency. Moreover, conventional RGB-based CNNs have too few input channels at the first layer, which can hardly utilize the high parallelism of CNN engines and greatly slows down the network inference. To overcome these problems, in this article, we propose FD-CNN, a novel CNN accelerator leveraging the partial-decoding technique to accelerate CNNs directly in the frequency domain. Specifically, we omit the most time-consuming IDCT (Inverse Discrete Cosine Transform) operations of image decoding and directly feed the DCT coefficients (i.e., the frequency data) into CNNs. By this means, the image decoder can be greatly simplified. Moreover, compared to the RGB data, frequency data has a narrower input resolution but has 64× more channels. Such an input shape is more hardware friendly than RGB data and can substantially reduce the CNN inference time. We then systematically discuss the algorithm, architecture, and command set design of FD-CNN. To deal with the irregularity of different CNN applications, we propose an image-decoding-aware design-space exploration (DSE) workflow to optimize the pipeline. We further propose an early stopping strategy to tackle the time-consuming progressive JPEG decoding. Comprehensive experiments demonstrate that FD-CNN achieves, on average, 3.24×, 4.29× throughput improvement, 2.55×, 2.54× energy reduction and 2.38×, 2.58× lower latency on ZC-706 and ZCU-102 platforms, respectively, compared to the baseline image-processing pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
墨折完成签到,获得积分10
1秒前
小飞侠完成签到,获得积分10
2秒前
orixero应助抱薪救火采纳,获得10
2秒前
laj完成签到,获得积分10
2秒前
Owen应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得50
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
Gakay发布了新的文献求助10
4秒前
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
hhhhmmmn完成签到,获得积分10
6秒前
wzy512发布了新的文献求助30
6秒前
7秒前
7秒前
8秒前
8秒前
赘婿应助可乐鸡翅采纳,获得50
9秒前
充电宝应助AnYijing采纳,获得10
9秒前
vkl完成签到 ,获得积分10
9秒前
9秒前
9秒前
都是发布了新的文献求助10
9秒前
10秒前
科目三应助周茉采纳,获得10
10秒前
赘婿应助黄雨果采纳,获得10
10秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257646
求助须知:如何正确求助?哪些是违规求助? 2899495
关于积分的说明 8306249
捐赠科研通 2568732
什么是DOI,文献DOI怎么找? 1395281
科研通“疑难数据库(出版商)”最低求助积分说明 652995
邀请新用户注册赠送积分活动 630822