FD-CNN: A Frequency-Domain FPGA Acceleration Scheme for CNN-Based Image-Processing Applications

计算机科学 卷积神经网络 现场可编程门阵列 离散余弦变换 人工智能 Stratix公司 管道(软件) 图像处理 解码方法 计算机硬件 计算机视觉 算法 图像(数学) 程序设计语言
作者
Xiaoyang Wang,Zhe Zhou,Zhihang Yuan,Jingchen Zhu,Y. Cao,Yao Zhang,Kangrui Sun,Guangyu Sun
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:22 (6): 1-30 被引量:2
标识
DOI:10.1145/3559105
摘要

In the emerging edge-computing scenarios, FPGAs have been widely adopted to accelerate convolutional neural network (CNN)–based image-processing applications, such as image classification, object detection, and image segmentation, and so on. A standard image-processing pipeline first decodes the collected compressed images from Internet of Things (IoTs) to RGB data, then feeds them into CNN engines to compute the results. Previous works mainly focus on optimizing the CNN inference parts. However, we notice that on the popular ZYNQ FPGA platforms, image decoding can also become the bottleneck due to the poor performance of embedded ARM CPUs. Even with a hardware accelerator, the decoding operations still incur considerable latency. Moreover, conventional RGB-based CNNs have too few input channels at the first layer, which can hardly utilize the high parallelism of CNN engines and greatly slows down the network inference. To overcome these problems, in this article, we propose FD-CNN, a novel CNN accelerator leveraging the partial-decoding technique to accelerate CNNs directly in the frequency domain. Specifically, we omit the most time-consuming IDCT (Inverse Discrete Cosine Transform) operations of image decoding and directly feed the DCT coefficients (i.e., the frequency data) into CNNs. By this means, the image decoder can be greatly simplified. Moreover, compared to the RGB data, frequency data has a narrower input resolution but has 64× more channels. Such an input shape is more hardware friendly than RGB data and can substantially reduce the CNN inference time. We then systematically discuss the algorithm, architecture, and command set design of FD-CNN. To deal with the irregularity of different CNN applications, we propose an image-decoding-aware design-space exploration (DSE) workflow to optimize the pipeline. We further propose an early stopping strategy to tackle the time-consuming progressive JPEG decoding. Comprehensive experiments demonstrate that FD-CNN achieves, on average, 3.24×, 4.29× throughput improvement, 2.55×, 2.54× energy reduction and 2.38×, 2.58× lower latency on ZC-706 and ZCU-102 platforms, respectively, compared to the baseline image-processing pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隔壁老王发布了新的文献求助80
刚刚
VDC发布了新的文献求助10
刚刚
qiu发布了新的文献求助10
1秒前
打打应助困困采纳,获得10
1秒前
2秒前
zhoujy完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
少7一点8发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
所所应助苹果熊猫采纳,获得10
7秒前
清蒸可达鸭完成签到,获得积分10
7秒前
啦啦啦完成签到,获得积分20
7秒前
8秒前
研友_VZG7GZ应助知更鸟采纳,获得10
9秒前
lalala发布了新的文献求助20
10秒前
11秒前
HSY完成签到,获得积分10
11秒前
无花果应助阿鑫采纳,获得10
12秒前
852应助少7一点8采纳,获得10
13秒前
hhhh发布了新的文献求助10
13秒前
李解万岁完成签到,获得积分10
13秒前
14秒前
风清扬发布了新的文献求助10
15秒前
上官若男应助renyi采纳,获得10
15秒前
wulijie完成签到,获得积分10
15秒前
nsy完成签到,获得积分10
16秒前
情怀应助qiu采纳,获得10
17秒前
量子星尘发布了新的文献求助50
17秒前
B站萧亚轩发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
香蕉觅云应助韋晴采纳,获得10
19秒前
20秒前
静仰星空完成签到,获得积分10
22秒前
哭泣青烟发布了新的文献求助10
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940930
求助须知:如何正确求助?哪些是违规求助? 4206959
关于积分的说明 13076244
捐赠科研通 3985690
什么是DOI,文献DOI怎么找? 2182252
邀请新用户注册赠送积分活动 1197870
关于科研通互助平台的介绍 1110152