An inception-based deep multiparametric net to classify clinical significance MRI regions of prostate cancer

前列腺癌 计算机科学 卷积神经网络 磁共振成像 人工智能 模式识别(心理学) 深度学习 前列腺 代表(政治) 医学 癌症 放射科 政治 政治学 内科学 法学
作者
Yesid Gutiérrez,John Arévalo,Fabio Martínez
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (22): 225004-225004 被引量:4
标识
DOI:10.1088/1361-6560/ac96c9
摘要

Objective.Multi-parametric magnetic resonance imaging (MP-MRI) has played an important role in prostate cancer diagnosis. Nevertheless, in the clinical routine, these sequences are principally analyzed from expert observations, which introduces an intrinsic variability in the diagnosis. Even worse, the isolated study of these MRI sequences trends to false positive detection due to other diseases that share similar radiological findings. Hence, the main objective of this study was to design, propose and validate a deep multimodal learning framework to support MRI-based prostate cancer diagnosis using cross-correlation modules that fuse MRI regions, coded from independent MRI parameter branches.Approach.This work introduces a multimodal scheme that integrates MP-MRI sequences and allows to characterize prostate lesions related to cancer disease. For doing so, potential 3D regions were extracted around expert annotations over different prostate zones. Then, a convolutional representation was obtained from each evaluated sequence, allowing a rich and hierarchical deep representation. Each convolutional branch representation was integrated following a special inception-like module. This module allows a redundant non-linear integration that preserves textural spatial lesion features and could obtain higher levels of representation.Main results.This strategy enhances micro-circulation, morphological, and cellular density features, which thereafter are integrated according to an inception late fusion strategy, leading to a better differentiation of prostate cancer lesions. The proposed strategy achieved a ROC-AUC of 0.82 over the PROSTATEx dataset by fusing regions ofKtransand apparent diffusion coefficient (ADC) maps coded from DWI-MRI.Significance.This study conducted an evaluation about how MP-MRI parameters can be fused, through a deep learning representation, exploiting spatial correlations among multiple lesion observations. The strategy, from a multimodal representation, learns branches representations to exploit radio-logical findings from ADC andKtrans. Besides, the proposed strategy is very compact (151 630 trainable parameters). Hence, the methodology is very fast in training (3 s for an epoch of 320 samples), being potentially applicable in clinical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sj发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
瘦瘦友易发布了新的文献求助10
5秒前
科研民工发布了新的文献求助10
5秒前
yy完成签到,获得积分10
6秒前
yi发布了新的文献求助10
6秒前
8秒前
SuperD发布了新的文献求助10
8秒前
yy发布了新的文献求助10
14秒前
钮连碧完成签到,获得积分20
15秒前
明芬发布了新的文献求助10
15秒前
思源应助修利采纳,获得10
15秒前
李健应助鱼鱼鱼采纳,获得10
16秒前
情怀应助水博士采纳,获得10
17秒前
24秒前
25秒前
酷波er应助震动的又槐采纳,获得10
27秒前
白露为霜完成签到,获得积分10
29秒前
水博士发布了新的文献求助10
29秒前
英俊的铭应助mjnrhw采纳,获得10
29秒前
今后应助tz采纳,获得30
30秒前
清风发布了新的文献求助10
32秒前
亭2007完成签到 ,获得积分10
35秒前
37秒前
酷酷梦易发布了新的文献求助10
40秒前
安静一曲完成签到 ,获得积分10
49秒前
清风完成签到,获得积分10
52秒前
嘉人完成签到 ,获得积分10
53秒前
汤姆完成签到,获得积分10
53秒前
一个可爱的人完成签到 ,获得积分10
55秒前
五香完成签到 ,获得积分10
56秒前
gigadrill发布了新的文献求助10
59秒前
1分钟前
Andre发布了新的文献求助10
1分钟前
hhhhh关注了科研通微信公众号
1分钟前
denghuiying发布了新的文献求助30
1分钟前
tz完成签到,获得积分20
1分钟前
七熵完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Restraining Hand: Captivity for Christ in China 500
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376496
求助须知:如何正确求助?哪些是违规求助? 2992527
关于积分的说明 8751269
捐赠科研通 2676850
什么是DOI,文献DOI怎么找? 1466311
科研通“疑难数据库(出版商)”最低求助积分说明 678247
邀请新用户注册赠送积分活动 669843