Graph-regularized federated learning with shareable side information

计算机科学 图形 理论计算机科学 数据科学 分布式计算
作者
Yupei Zhang,Shuangshuang Wei,Shuhui Liu,Yifei Wang,Yunan Xu,Yuxin Li,Xuequn Shang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:257: 109960-109960 被引量:5
标识
DOI:10.1016/j.knosys.2022.109960
摘要

This study focuses on specifying local models in federated learning (FL), which allows a large number of clients to improve their corresponding models by training a shared global model. However, current FL models often fail to consider the difference between the data distributions in various clients while enforcing all local models to be identical, thus leading to a considerable loss of local personalization. To this end, this study proposes a graph-regularized federated learning framework, GraphFL, by exploiting the available client features commonly shared with other clients in the real world. Specifically, GraphFL achieves the similarity matrix of all clients using the permitted shareable side information and subsequently updates local models by returning a specific model from the server instead of an identical model. The proposed model iteratively learns the neural network parameters for each client. Compared with state-of-the-art FL models, GraphFL can benefit from the employed similarity and achieve improved classification performance in clients on three publicly available image datasets. • Exploit the side information of clients for personalized federated learning. • Propose a client-similarity graph regularized federated learning framework. • Introduce to calculate the similarity between non-iid clients by data distributions. • Conduct the evaluations on the personalization of federation frameworks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
学术不难发布了新的文献求助30
2秒前
3秒前
丘比特应助猪猪hero采纳,获得10
3秒前
7秒前
9秒前
席河木鱼发布了新的文献求助10
11秒前
淡定小白菜完成签到,获得积分10
11秒前
朝朝发布了新的文献求助10
14秒前
14秒前
15秒前
麦苗果果发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
王www完成签到,获得积分10
17秒前
17秒前
1751587229发布了新的文献求助10
18秒前
tao完成签到 ,获得积分10
19秒前
孙皮皮完成签到 ,获得积分10
20秒前
猪猪hero发布了新的文献求助10
21秒前
泡面完成签到 ,获得积分10
22秒前
彭于彦祖应助刘玉采纳,获得30
22秒前
大模型应助席河木鱼采纳,获得10
23秒前
热心市民小红花应助骑骑采纳,获得10
23秒前
chy发布了新的文献求助10
23秒前
bxyyy应助雪山飞龙采纳,获得10
26秒前
爆米花应助Alina1874采纳,获得10
26秒前
26秒前
彭于晏应助Hemingwayway采纳,获得10
27秒前
学术不难完成签到,获得积分20
28秒前
朝朝完成签到,获得积分10
28秒前
29秒前
孤独的狼完成签到,获得积分10
29秒前
31秒前
LingYun发布了新的文献求助20
32秒前
Xq321pX发布了新的文献求助10
33秒前
34秒前
34秒前
仁爱的伯云完成签到,获得积分10
34秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824