Graph-regularized federated learning with shareable side information

计算机科学 图形 理论计算机科学 数据科学 分布式计算
作者
Yupei Zhang,Shuangshuang Wei,Shuhui Liu,Yifei Wang,Yunan Xu,Yuxin Li,Xuequn Shang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:257: 109960-109960 被引量:5
标识
DOI:10.1016/j.knosys.2022.109960
摘要

This study focuses on specifying local models in federated learning (FL), which allows a large number of clients to improve their corresponding models by training a shared global model. However, current FL models often fail to consider the difference between the data distributions in various clients while enforcing all local models to be identical, thus leading to a considerable loss of local personalization. To this end, this study proposes a graph-regularized federated learning framework, GraphFL, by exploiting the available client features commonly shared with other clients in the real world. Specifically, GraphFL achieves the similarity matrix of all clients using the permitted shareable side information and subsequently updates local models by returning a specific model from the server instead of an identical model. The proposed model iteratively learns the neural network parameters for each client. Compared with state-of-the-art FL models, GraphFL can benefit from the employed similarity and achieve improved classification performance in clients on three publicly available image datasets. • Exploit the side information of clients for personalized federated learning. • Propose a client-similarity graph regularized federated learning framework. • Introduce to calculate the similarity between non-iid clients by data distributions. • Conduct the evaluations on the personalization of federation frameworks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
淡淡抽屉完成签到,获得积分10
3秒前
浮游应助ginger采纳,获得10
4秒前
乐乐应助mhc采纳,获得10
4秒前
小二郎应助YovQ采纳,获得10
5秒前
浮游应助HOOW采纳,获得10
6秒前
6秒前
7秒前
楼兰梵音完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
大个应助Xu采纳,获得10
8秒前
innocence@x完成签到,获得积分10
8秒前
天天文献我爱看完成签到,获得积分10
8秒前
ChenXinde发布了新的文献求助10
9秒前
沧浪完成签到,获得积分10
9秒前
xio发布了新的文献求助10
9秒前
Yuuki发布了新的文献求助10
11秒前
andou发布了新的文献求助10
11秒前
ankey发布了新的文献求助10
11秒前
12秒前
脑洞疼应助小党采纳,获得10
13秒前
白云发布了新的文献求助10
13秒前
充电宝应助苗条梦玉采纳,获得10
14秒前
焦糖布丁的滋味完成签到,获得积分10
14秒前
JoeJ应助痴情的涵山采纳,获得10
15秒前
共享精神应助倪小采纳,获得10
15秒前
镓氧锌钇铀举报Gaahung求助涉嫌违规
18秒前
科研通AI6应助冷艳觅柔采纳,获得10
19秒前
19秒前
20秒前
hitdsh应助wangchiyi采纳,获得10
20秒前
果粒多发布了新的文献求助10
22秒前
22秒前
23秒前
桐桐应助天天文献我爱看采纳,获得10
23秒前
华仔应助tang采纳,获得10
23秒前
zjujirenjie发布了新的文献求助10
23秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5242511
求助须知:如何正确求助?哪些是违规求助? 4409060
关于积分的说明 13723997
捐赠科研通 4278352
什么是DOI,文献DOI怎么找? 2347612
邀请新用户注册赠送积分活动 1344773
关于科研通互助平台的介绍 1302862