Graph-regularized federated learning with shareable side information

计算机科学 图形 理论计算机科学 数据科学 分布式计算
作者
Yupei Zhang,Shuangshuang Wei,Shuhui Liu,Yifei Wang,Yunan Xu,Yuxin Li,Xuequn Shang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:257: 109960-109960 被引量:5
标识
DOI:10.1016/j.knosys.2022.109960
摘要

This study focuses on specifying local models in federated learning (FL), which allows a large number of clients to improve their corresponding models by training a shared global model. However, current FL models often fail to consider the difference between the data distributions in various clients while enforcing all local models to be identical, thus leading to a considerable loss of local personalization. To this end, this study proposes a graph-regularized federated learning framework, GraphFL, by exploiting the available client features commonly shared with other clients in the real world. Specifically, GraphFL achieves the similarity matrix of all clients using the permitted shareable side information and subsequently updates local models by returning a specific model from the server instead of an identical model. The proposed model iteratively learns the neural network parameters for each client. Compared with state-of-the-art FL models, GraphFL can benefit from the employed similarity and achieve improved classification performance in clients on three publicly available image datasets. • Exploit the side information of clients for personalized federated learning. • Propose a client-similarity graph regularized federated learning framework. • Introduce to calculate the similarity between non-iid clients by data distributions. • Conduct the evaluations on the personalization of federation frameworks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷的寒天完成签到,获得积分20
1秒前
老猫完成签到,获得积分10
1秒前
晚霞完成签到 ,获得积分10
2秒前
Jasper应助芷莯采纳,获得10
2秒前
zxt发布了新的文献求助10
2秒前
2秒前
充电宝应助小Yang采纳,获得10
4秒前
酷波er应助LZH采纳,获得10
4秒前
4秒前
木木完成签到,获得积分10
4秒前
4秒前
奥利给完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
9秒前
WZH完成签到,获得积分10
9秒前
小黄瓜896发布了新的文献求助10
9秒前
哈哈哈哈哈哈完成签到,获得积分10
10秒前
王青青完成签到,获得积分10
11秒前
邢晓彤完成签到 ,获得积分10
11秒前
芷莯发布了新的文献求助10
11秒前
子车茗应助小厉害采纳,获得20
12秒前
14秒前
15秒前
helpme完成签到,获得积分10
16秒前
高兴的小馒头完成签到,获得积分20
16秒前
18秒前
felix发布了新的文献求助10
18秒前
芷莯完成签到,获得积分10
19秒前
19秒前
mint完成签到,获得积分10
19秒前
自由凌丝完成签到,获得积分10
19秒前
思源应助徐徐徐徐徐徐徐采纳,获得10
19秒前
田様应助冷酷的寒天采纳,获得10
21秒前
21秒前
22秒前
扶光完成签到 ,获得积分10
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806