模块化设计
微流控
计算机科学
过程(计算)
3D打印
纳米技术
毛细管作用
概念证明
接口(物质)
任务(项目管理)
计算机硬件
嵌入式系统
材料科学
机械工程
工程类
系统工程
复合材料
操作系统
毛细管数
作者
Jing Nie,Qing Gao,Jingjiang Qiu,Miao Sun,An Liu,Lei Shao,Jianzhong Fu,Peng Zhao,Yong He
出处
期刊:Biofabrication
[IOP Publishing]
日期:2018-02-08
卷期号:10 (3): 035001-035001
被引量:67
标识
DOI:10.1088/1758-5090/aaadd3
摘要
The field of how to rapidly assemble microfluidics with modular components continuously attracts researchers' attention, however, extra efforts must be devoted to solving the problems of leaking and aligning between individual modules. This paper presents a novel type of modular microfluidic device, driven by capillary force. There is no necessity for a strict seal or special alignment, and its open structures make it easy to integrate various stents and reactants. The key rationale for this method is to print different functional modules with a low-cost three-dimensional (3D) printer, then fill the channels with capillary materials and assemble them with plugs like Lego® bricks. This rapidly reconstructed modular microfluidic device consists of a variety of common functional modules and other personalized modules, each module having a unified standard interface for easy assembly. As it can be printed by a desktop 3D printer, the manufacturing process is simple and efficient, with controllable regulation of the flow channel scale. Through diverse combinations of different modules, a variety of different functions can be achieved, without duplicating the manufacturing process. A single module can also be taken out for testing and analysis. What's more, combined with basic circuit components, it can serve as a low-cost Lego®-like modular microfluidic circuits. As a proof of concept, the modular microfluidic device has been successfully demonstrated and used for stent degradation and cell cultures, revealing the potential use of this method in both chemical and biological research.
科研通智能强力驱动
Strongly Powered by AbleSci AI