作者
Rama Akondy,Mark Fitch,Srilatha Edupuganti,Shu Yang,Haydn Kissick,Kelvin W. Li,Ben Youngblood,Hossam A. Abdelsamed,Donald J. McGuire,Kristen W. Cohen,Gabriela Alexe,Shashi Nagar,Megan McCausland,Gupta Sk,Pramila Tata,W. Nicholas Haining,M. Juliana McElrath,David Zhang,Bin Hu,William J. Greenleaf,Jörg J. Goronzy,Mark J. Mulligan,Marc K. Hellerstein,Rafi Ahmed
摘要
The differentiation of human memory CD8 T cells is not well understood. Here we address this issue using the live yellow fever virus (YFV) vaccine, which induces long-term immunity in humans. We used in vivo deuterium labelling to mark CD8 T cells that proliferated in response to the virus and then assessed cellular turnover and longevity by quantifying deuterium dilution kinetics in YFV-specific CD8 T cells using mass spectrometry. This longitudinal analysis showed that the memory pool originates from CD8 T cells that divided extensively during the first two weeks after infection and is maintained by quiescent cells that divide less than once every year (doubling time of over 450 days). Although these long-lived YFV-specific memory CD8 T cells did not express effector molecules, their epigenetic landscape resembled that of effector CD8 T cells. This open chromatin profile at effector genes was maintained in memory CD8 T cells isolated even a decade after vaccination, indicating that these cells retain an epigenetic fingerprint of their effector history and remain poised to respond rapidly upon re-exposure to the pathogen. In vivo deuterium labelling reveals a quiescent population of long-lived human virus-specific memory CD8 T cells that maintain the epigenetic landscape of effector cells, which facilitates rapid responses to pathogen re-exposure. Memory cells protect against reinfection, or protect against infection after vaccination, but whether they are derived from naive or effector T cells is unknown. Rafi Ahmed and colleagues study the generation, maintenance and characteristics of long-lived memory CD8 T cells in humans after yellow fever vaccination and deuterium labelling. The study demonstrates that long-lived memory CD8 T cells are derived from cells that have divided extensively during the effector phase of the infection. Quiescent memory cells appear to revert to a naive phenotype but maintain an upregulated pattern of gene regulation that resembles effector T cells. In a second paper in this issue, Rafi Ahmed and colleagues examine changes in DNA methylation during effector and memory CD8 T cell differentiation, providing support for a model in which long-lived memory cells arise from a precursor of effector cells.