已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimation of soil organic carbon in arable soil in Belgium and Luxembourg with the LUCAS topsoil database

表土 土壤碳 耕地 环境科学 土壤图 土壤科学 背景(考古学) 土工试验 偏最小二乘回归 数字土壤制图 土壤水分 数学 统计 地理 农业 考古
作者
Fabio Castaldi,Sabine Chabrillat,Caroline Chartin,Valérie Genot,Arwyn Jones,Bas van Wesemael
出处
期刊:European Journal of Soil Science [Wiley]
卷期号:69 (4): 592-603 被引量:62
标识
DOI:10.1111/ejss.12553
摘要

Summary Quantification of the soil organic carbon (SOC) content over large areas is mandatory to obtain accurate soil characterization and classification, which can improve site‐specific management at local or regional scales. In this context, soil spectroscopy is a well‐consolidated and widespread method to estimate soil variables, and in particular SOC content, at a low cost for routine analysis. The increasing number of large soil spectral libraries collected worldwide reflects the importance of spectroscopy in soil science. These large libraries contain soil samples derived from a large number of pedological regions and thus from different parent materials and soil types. In the light of the huge variation in the spectral responses to SOC content and composition, a rigorous process is necessary to subdivide large spectral libraries to avoid calibration with global models that fail to predict local variation in SOC content. Here, we propose to classify the European LUCAS topsoil database with a cluster analysis based on a large number of soil properties. The soil samples collected from arable land in the LUCAS database were chosen to apply a standardized multivariate calibration approach, valid for large areas, to calibrate local models without the need for further field and laboratory work. Cluster analysis detected seven soil classes and the samples belonging to each class were used to calibrate specific partial least squares regression (PLSR) models to estimate SOC content in three spectral libraries collected in Belgium and Luxembourg. Soil organic carbon was predicted with good accuracy, both within each library (root mean square error (RMSE), 1.2–5.1 g kg −1 ; ratio of performance to prediction (RPD), 1.41–2.24) and for the samples of the three libraries together (RMSE, 3.7 g kg −1 ; RPD, 2.54). The proposed approach could enable SOC to be estimated for arable soils in Europe with only the spectra of soil samples and without the need for laboratory analyses. Highlights We investigated the potential of the LUCAS database to estimate SOC in spectral libraries. We proposed a routine approach to estimate SOC with less laboratory work. The classification of the LUCAS topsoil dataset improved estimation accuracy of SOC SOC content can be predicted from soil spectra with models calibrated on the LUCAS database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助快乐雅青采纳,获得10
1秒前
1秒前
幼稚人格完成签到,获得积分10
1秒前
海纳百川发布了新的文献求助10
2秒前
老实嘉熙完成签到,获得积分10
4秒前
6秒前
6秒前
所所应助容荣采纳,获得10
9秒前
Acadia发布了新的文献求助10
10秒前
11秒前
clauuuu完成签到,获得积分10
11秒前
12秒前
所所应助韩冬冬采纳,获得10
17秒前
lzy完成签到,获得积分10
19秒前
小蘑菇应助风啊采纳,获得10
19秒前
全若之完成签到,获得积分10
22秒前
无花果应助小云采纳,获得10
22秒前
29秒前
31秒前
四氟乙烯发布了新的文献求助10
32秒前
memore完成签到 ,获得积分10
33秒前
Hello应助成就的书包采纳,获得10
36秒前
不安红豆完成签到,获得积分10
36秒前
37秒前
小二郎应助Jrssion采纳,获得10
38秒前
风啊发布了新的文献求助10
43秒前
chai发布了新的文献求助10
43秒前
44秒前
jj824完成签到 ,获得积分10
44秒前
科研通AI2S应助怡然的幻灵采纳,获得10
44秒前
48秒前
科目三应助Y哦莫哦莫采纳,获得10
49秒前
壳r发布了新的文献求助10
49秒前
49秒前
Jrssion完成签到,获得积分10
50秒前
51秒前
风啊完成签到,获得积分20
52秒前
Atropine发布了新的文献求助30
52秒前
52秒前
研友Bn完成签到 ,获得积分10
55秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136861
求助须知:如何正确求助?哪些是违规求助? 2787848
关于积分的说明 7783420
捐赠科研通 2443925
什么是DOI,文献DOI怎么找? 1299485
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954