卷积神经网络
人工智能
架空(工程)
编码(集合论)
任务(项目管理)
分割
突出
光学(聚焦)
灵敏度(控制系统)
图像(数学)
网(多面体)
班级(哲学)
模式识别(心理学)
深度学习
建筑
机器学习
计算机科学
经济
几何学
电子工程
数学
程序设计语言
管理
集合(抽象数据类型)
操作系统
视觉艺术
艺术
工程类
物理
光学
作者
Ozan Oktay,Jo Schlemper,Loïc Le Folgoc,Matthew C. H. Lee,Mattias P. Heinrich,Kazunari Misawa,Kensaku Mori,Steven McDonagh,Nils Hammerla,Bernhard Kainz,Ben Glocker,Daniel Rueckert
出处
期刊:Cornell University - arXiv
日期:2018-01-01
被引量:3495
标识
DOI:10.48550/arxiv.1804.03999
摘要
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.
科研通智能强力驱动
Strongly Powered by AbleSci AI