Re-Engineering RNA Molecules into Therapeutic Agents

核酸 核糖核酸 寡核苷酸 DNA 核酸类似物 核苷酸 化学生物学 化学 核酸结构 生物化学 生物 组合化学 计算生物学 核酸热力学 基因
作者
Martin Egli,Muthiah Manoharan
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (4): 1036-1047 被引量:117
标识
DOI:10.1021/acs.accounts.8b00650
摘要

Efforts to chemically modify nucleic acids got underway merely a decade after the discovery of the DNA double helix and initially targeted nucleosides and nucleotides. The origins of three analogues that remain staples of modification strategies and figure prominently in FDA-approved nucleic acid therapeutics can be traced to the 1960s: 2'-deoxy-2'-fluoro-RNA (2'-F RNA), 2'- O-methyl-RNA (2'- OMe RNA), and the phosphorothioates (PS-DNA/RNA). Progress in nucleoside phosphoramidite-based solid phase oligonucleotide synthesis has gone hand in hand with the creation of second-generation (e.g., 2'- O-(2-methoxyethyl)-RNA, MOE-RNA) and third-generation (e.g., bicyclic nucleic acids, BNAs) analogues, giving rise to an expanding universe of modified nucleic acids. Thus, beyond site-specifically altered DNAs and RNAs with a modified base, sugar, and/or phosphate backbone moieties, nucleic acid chemists have created a host of conjugated oligonucleotides and artificial genetic polymers (XNAs). The search for oligonucleotides with therapeutic efficacy constitutes a significant driving force for these investigations. However, nanotechnology, diagnostics, synthetic biology and genetics, nucleic acid etiology, and basic research directed at the properties of native and artificial pairing systems have all stimulated the design of ever more diverse modifications. Modification of nucleic acids can affect pairing and chemical stability, conformation and interactions with a flurry of proteins and enzymes that play important roles in uptake, transport or processing of targets. Enhancement of metabolic stability is a central concern in the design of antisense, siRNA and aptamer oligonucleotides for therapeutic applications. In the antisense approach, uniformly modified oligonucleotides or so-called gapmers are used to target a specific RNA. The former may sterically block transcription or direct alternative splicing, whereas the latter feature a central PS window that elicits RNase H-mediated cleavage of the target. The key enzyme in RNA interference (RNAi) is Argonaute 2 (Ago2), a dynamic multidomain enzyme that binds multiple regions of the guide (antisense) and passenger (sense) siRNAs. The complexity of the individual interactions between Ago2 and the siRNA duplex provides significant challenges for chemical modification. Therefore, a uniform (the same modification throughout, e.g., antisense) or nearly uniform (e.g., aptamer) modification strategy is less useful in the pursuit of siRNA therapeutic leads. Instead, unique structural features and protein interactions of 5'-end (guide/Ago2MID domain), seed region, central region (cleavage site/Ago2 PIWI domain), and 3'-terminal nucleotides (guide/Ago2 PAZ domain) demand a more nuanced approach in the design of chemically modified siRNAs for therapeutic use. This Account summarizes current siRNA modification strategies with an emphasis on the regio-specific interactions between oligonucleotide and Ago2 and how these affect the choice of modification and optimization of siRNA efficacy. In addition to standard assays applied to measure the effects of modification on the stability of pairing and resistance against nuclease degradation, structural insights based on crystallographic data for modified RNAs alone and in complex with Ago2 from molecular modeling studies are a valuable guide in the design of siRNA therapeutics. Thus, this comprehensive approach is expected to result in accelerated generation of new siRNA-based therapies against various diseases, now that the first siRNA has obtained approval by the US FDA for treatment of hereditary hATTR amyloidosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
浮生发布了新的文献求助10
4秒前
明理苑博发布了新的文献求助30
4秒前
5秒前
乐乐应助gaugua采纳,获得10
5秒前
ChenXinde发布了新的文献求助10
6秒前
ccc完成签到,获得积分10
6秒前
SciGPT应助浮云采纳,获得10
7秒前
Bruce完成签到,获得积分10
8秒前
周老八发布了新的文献求助10
8秒前
虚幻青发布了新的文献求助10
8秒前
EST杨完成签到 ,获得积分10
9秒前
12秒前
13秒前
13秒前
14秒前
浮云完成签到,获得积分10
16秒前
天天快乐应助热情的人杰采纳,获得10
16秒前
風來完成签到,获得积分10
16秒前
ChenXinde发布了新的文献求助10
16秒前
17秒前
浮云发布了新的文献求助10
18秒前
浮生发布了新的文献求助10
19秒前
19秒前
匡佐英发布了新的文献求助10
22秒前
23秒前
23秒前
记号完成签到,获得积分10
25秒前
yao发布了新的文献求助10
25秒前
25秒前
活力的以寒完成签到 ,获得积分10
25秒前
26秒前
JamesPei应助科研通管家采纳,获得30
27秒前
彭于晏应助科研通管家采纳,获得10
27秒前
田様应助科研通管家采纳,获得10
27秒前
ACOY应助科研通管家采纳,获得10
27秒前
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944883
关于积分的说明 8521919
捐赠科研通 2620620
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134