A novel intelligent classification model for breast cancer diagnosis

乳腺癌 特征选择 计算机科学 排名(信息检索) 人工智能 支持向量机 机器学习 数据挖掘 特征(语言学) 模拟退火 癌症 模式识别(心理学) 医学 语言学 内科学 哲学
作者
Na Liu,Ershi Qi,Na Liu,Bo Gao,Gui-Qiu Liu
出处
期刊:Information Processing and Management [Elsevier]
卷期号:56 (3): 609-623 被引量:108
标识
DOI:10.1016/j.ipm.2018.10.014
摘要

Breast cancer is one of the leading causes of death among women worldwide. Accurate and early detection of breast cancer can ensure long-term surviving for the patients. However, traditional classification algorithms usually aim only to maximize the classification accuracy, failing to take into consideration the misclassification costs between different categories. Furthermore, the costs associated with missing a cancer case (false negative) are clearly much higher than those of mislabeling a benign one (false positive). To overcome this drawback and further improving the classification accuracy of the breast cancer diagnosis, in this work, a novel breast cancer intelligent diagnosis approach has been proposed, which employed information gain directed simulated annealing genetic algorithm wrapper (IGSAGAW) for feature selection, in this process, we performs the ranking of features according to IG algorithm, and extracting the top m optimal feature utilized the cost sensitive support vector machine (CSSVM) learning algorithm. Our proposed feature selection approach which can not only help to reduce the complexity of SAGASW algorithm and effectively extracting the optimal feature subset to a certain extent, but it can also obtain the maximum classification accuracy and minimum misclassification cost. The efficacy of our proposed approach is tested on Wisconsin Original Breast Cancer (WBC) and Wisconsin Diagnostic Breast Cancer (WDBC) breast cancer data sets, and the results demonstrate that our proposed hybrid algorithm outperforms other comparison methods. The main objective of this study was to apply our research in real clinical diagnostic system and thereby assist clinical physicians in making correct and effective decisions in the future. Moreover our proposed method could also be applied to other illness diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘艳红发布了新的文献求助10
刚刚
周蛋蛋发布了新的文献求助10
刚刚
卷心菜完成签到,获得积分20
1秒前
1秒前
铃铃铛完成签到,获得积分10
1秒前
alien52完成签到,获得积分10
2秒前
懒羊羊发布了新的文献求助10
2秒前
2秒前
橙子完成签到 ,获得积分10
2秒前
李小新完成签到 ,获得积分10
2秒前
杨梦珺完成签到,获得积分10
2秒前
Stella应助yaoyinlin采纳,获得10
2秒前
2秒前
Qing完成签到,获得积分10
2秒前
vc发布了新的文献求助10
2秒前
852应助lyq123456采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
lvlv完成签到,获得积分10
3秒前
Akim应助付付大作战采纳,获得10
3秒前
大力巴完成签到,获得积分10
3秒前
赘婿应助小菜鸟采纳,获得10
3秒前
4秒前
4秒前
夕荀发布了新的文献求助10
4秒前
跳跳熊完成签到,获得积分10
4秒前
在水一方应助勤劳的忆寒采纳,获得10
4秒前
无限的思柔完成签到,获得积分20
4秒前
顺利毕业完成签到,获得积分10
4秒前
杨梦珺发布了新的文献求助10
5秒前
alien52发布了新的文献求助10
5秒前
萌宝发布了新的文献求助10
5秒前
尼古拉耶维奇完成签到,获得积分10
5秒前
华仔应助_Dearlxy采纳,获得10
5秒前
海棠先雪完成签到,获得积分10
5秒前
史迪奇大王完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006