A novel intelligent classification model for breast cancer diagnosis

乳腺癌 特征选择 计算机科学 排名(信息检索) 人工智能 支持向量机 机器学习 数据挖掘 特征(语言学) 模拟退火 癌症 模式识别(心理学) 医学 内科学 语言学 哲学
作者
Na Liu,Ershi Qi,Na Liu,Bo Gao,Gui-Qiu Liu
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:56 (3): 609-623 被引量:108
标识
DOI:10.1016/j.ipm.2018.10.014
摘要

Breast cancer is one of the leading causes of death among women worldwide. Accurate and early detection of breast cancer can ensure long-term surviving for the patients. However, traditional classification algorithms usually aim only to maximize the classification accuracy, failing to take into consideration the misclassification costs between different categories. Furthermore, the costs associated with missing a cancer case (false negative) are clearly much higher than those of mislabeling a benign one (false positive). To overcome this drawback and further improving the classification accuracy of the breast cancer diagnosis, in this work, a novel breast cancer intelligent diagnosis approach has been proposed, which employed information gain directed simulated annealing genetic algorithm wrapper (IGSAGAW) for feature selection, in this process, we performs the ranking of features according to IG algorithm, and extracting the top m optimal feature utilized the cost sensitive support vector machine (CSSVM) learning algorithm. Our proposed feature selection approach which can not only help to reduce the complexity of SAGASW algorithm and effectively extracting the optimal feature subset to a certain extent, but it can also obtain the maximum classification accuracy and minimum misclassification cost. The efficacy of our proposed approach is tested on Wisconsin Original Breast Cancer (WBC) and Wisconsin Diagnostic Breast Cancer (WDBC) breast cancer data sets, and the results demonstrate that our proposed hybrid algorithm outperforms other comparison methods. The main objective of this study was to apply our research in real clinical diagnostic system and thereby assist clinical physicians in making correct and effective decisions in the future. Moreover our proposed method could also be applied to other illness diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单灵凡完成签到,获得积分20
刚刚
xmuchem关注了科研通微信公众号
1秒前
黑鲨完成签到 ,获得积分10
1秒前
1秒前
小巧皮卡丘完成签到,获得积分10
2秒前
脑洞疼应助辛子采纳,获得10
2秒前
认真的焦发布了新的文献求助10
2秒前
huilihub发布了新的文献求助10
3秒前
姚小包子发布了新的文献求助10
3秒前
3秒前
3秒前
Elaine2021完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
LEMONS应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
淑儿哥哥完成签到,获得积分10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
丘比特应助张德帅采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
妩媚的强炫完成签到,获得积分10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
meng17应助科研通管家采纳,获得20
5秒前
Billy应助科研通管家采纳,获得30
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
连续体26发布了新的文献求助30
6秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
Billy应助科研通管家采纳,获得30
6秒前
LYSM应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149