A novel intelligent classification model for breast cancer diagnosis

乳腺癌 特征选择 计算机科学 排名(信息检索) 人工智能 支持向量机 机器学习 数据挖掘 特征(语言学) 模拟退火 癌症 模式识别(心理学) 医学 语言学 内科学 哲学
作者
Na Liu,Ershi Qi,Na Liu,Bo Gao,Gui-Qiu Liu
出处
期刊:Information Processing and Management [Elsevier]
卷期号:56 (3): 609-623 被引量:108
标识
DOI:10.1016/j.ipm.2018.10.014
摘要

Breast cancer is one of the leading causes of death among women worldwide. Accurate and early detection of breast cancer can ensure long-term surviving for the patients. However, traditional classification algorithms usually aim only to maximize the classification accuracy, failing to take into consideration the misclassification costs between different categories. Furthermore, the costs associated with missing a cancer case (false negative) are clearly much higher than those of mislabeling a benign one (false positive). To overcome this drawback and further improving the classification accuracy of the breast cancer diagnosis, in this work, a novel breast cancer intelligent diagnosis approach has been proposed, which employed information gain directed simulated annealing genetic algorithm wrapper (IGSAGAW) for feature selection, in this process, we performs the ranking of features according to IG algorithm, and extracting the top m optimal feature utilized the cost sensitive support vector machine (CSSVM) learning algorithm. Our proposed feature selection approach which can not only help to reduce the complexity of SAGASW algorithm and effectively extracting the optimal feature subset to a certain extent, but it can also obtain the maximum classification accuracy and minimum misclassification cost. The efficacy of our proposed approach is tested on Wisconsin Original Breast Cancer (WBC) and Wisconsin Diagnostic Breast Cancer (WDBC) breast cancer data sets, and the results demonstrate that our proposed hybrid algorithm outperforms other comparison methods. The main objective of this study was to apply our research in real clinical diagnostic system and thereby assist clinical physicians in making correct and effective decisions in the future. Moreover our proposed method could also be applied to other illness diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
123的小王子完成签到,获得积分20
3秒前
ASZXDW发布了新的文献求助10
3秒前
想吃泡芙完成签到 ,获得积分10
5秒前
6秒前
聪慧勒发布了新的文献求助30
7秒前
就是躺应助卷卷采纳,获得10
8秒前
10秒前
时尚的初柔完成签到,获得积分10
11秒前
小白完成签到 ,获得积分10
16秒前
qqesk完成签到,获得积分20
20秒前
23秒前
田様应助科研通管家采纳,获得10
27秒前
iNk应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
华仔应助科研通管家采纳,获得10
27秒前
华仔应助科研通管家采纳,获得10
28秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
Leelelele应助科研通管家采纳,获得20
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
研友_X89o6n完成签到,获得积分10
28秒前
29秒前
Duolalala完成签到,获得积分10
29秒前
1111完成签到,获得积分10
30秒前
31秒前
欧阳半仙发布了新的文献求助10
34秒前
未改完成签到,获得积分10
34秒前
高挑的向真完成签到,获得积分10
36秒前
桐月十六完成签到 ,获得积分10
37秒前
37秒前
38秒前
充电宝应助Leone采纳,获得10
39秒前
39秒前
HUCAI完成签到,获得积分10
39秒前
43秒前
你好啊发布了新的文献求助10
43秒前
deadpool发布了新的文献求助10
43秒前
gf发布了新的文献求助10
44秒前
黑宝坨完成签到,获得积分10
48秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043