芘
环境化学
污染
土壤水分
土壤污染
环境科学
萃取(化学)
土工试验
化学
毒理
生物
色谱法
土壤科学
有机化学
生态学
作者
Hongxue Qi,Xiuling Chen,Yi-En Du,Xianjun Niu,Feng‐Biao Guo,Wanxi Li
标识
DOI:10.1016/j.ecoenv.2019.109381
摘要
To assess the human cancer risk exposed to soil contaminated by polycyclic aromatic hydrocarbons (PAHs) in Shanxi province, China, the total 33 samples in the surface soil were collected from 11 cities, and the priority 15 PAHs were analyzed using gas chromatography-mass spectrometry after the soxhlet extraction and silica-alumina column purification. As a result, the levels of ∑15PAH in soil varied from 66.2 to 2633 ng/g dry weight (dw) with a mean of 732 ng/g dw, and seven carcinogenic PAHs made up 42–69% of the total priority PAHs and had an average value of 367 (in the range of 33.2 to 1181) ng/g dw. Accordingly, the total concentrations of benzo[a]pyrene equivalents (BaPeq) for 15 PAHs ranged from 10.3 to 358 (average 98.3) ng/g dw, and the seven carcinogenic BaPeq accounted for above 90%. Subsequently, the possible sources of PAHs in soil were identified by isomer ratios, demonstrating that the combustion contributed to the main source. Finally, the incremental lifetime cancer risks (ILCR) of soil contaminated by 15 priority PAHs were estimated using the targeted chemical-specific approach. ILCR values were considered to be greater than 1 × 10−6 in 16 of 33 sites and followed a decreasing trend of adulthood > childhood > adolescence. Subsequently, the analysis of variance was performed by average ILCR value among the 11 cities (n = 3, p < 0.01), which indicated that the potential low cancer risk significantly increased for nearby residents in two areas, including Datong and Xinzhou, with the ILCR values of 4.61 ± 1.93 and 3.92 ± 2.54 per million, respectively. Therefore, the consumption of traditional coal should be controlled and partially replaced with the alternative energy sources. And the rigorous monitoring should be termly warranted to avoid the cancer risk for human being in agricultural area of Shanxi, China.
科研通智能强力驱动
Strongly Powered by AbleSci AI