The goal of this protocol is to present how to perform spin- and angle-resolved photoemission spectroscopy combined with polarization-variable 7-eV laser (laser-SARPES), and demonstrate a power of this technique for studying solid state physics. Laser-SARPES achieves two great capabilities. Firstly, by examining orbital selection rule of linearly polarized lasers, orbital selective excitation can be carried out in SAPRES experiment. Secondly, the technique can show full information of a variation of the spin quantum axis as a function of the light polarization. To demonstrate the power of the collaboration of these capabilities in laser-SARPES, we apply this technique for the investigations of spin-orbit coupled surface states of Bi2Se3. This technique affords to decompose spin and orbital components from the spin-orbit coupled wavefunctions. Moreover, as a representative advantage of using the direct spin detection collaborated with the polarization-variable laser, the technique unambiguously visualizes the light polarization dependence of the spin quantum axis in three-dimension. Laser-SARPES dramatically increases a capability of photoemission technique.