A novel DEMS approach for studying gas evolution at battery-type electrode|electrolyte interfaces: High-voltage LiNi0.5Mn1.5O4 cathode in ethylene and dimethyl carbonate electrolytes

电解质 碳酸乙烯酯 电化学 电极 阴极 电池(电) 碳酸盐 碳酸二甲酯 锂离子电池 无机化学 锂(药物) 化学工程 化学 催化作用 物理化学 有机化学 热力学 功率(物理) 内分泌学 工程类 物理 医学
作者
Z. Jusys,Markus Binder,Johannes Schnaidt,R. Jürgen Behm
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:314: 188-201 被引量:50
标识
DOI:10.1016/j.electacta.2019.05.076
摘要

Aiming at a better molecular scale understanding of electrolyte degradation processes at electrode|electrolyte interfaces typical for modern batteries, in particular for lithium ion batteries (LIBs), we have developed a novel Differential Electrochemical Mass Spectrometry (DEMS) approach, and applied this for analyzing the evolution of volatile decomposition products at a high voltage LiNi0.5Mn1.5O4 (LNMO) cathode. Using a standard LP30 lithium ion battery electrolyte as well as 1.0 M LiPF6 in either ethylene carbonate (EC) or dimethyl carbonate (DMC), respectively, the gas evolution rates during potentiodynamic cycling and in potential step experiments were monitored online, with high time resolution, in half-cell measurements. Following the potential and time dependent appearance of the reaction products and their fragments, the major gases evolved were identified as H2, CO2 and CO. Their formation at the LNMO electrode at high potentials is explained by Ni4+ catalyzed dehydrogenation of organic carbonates, as evidenced in the potential step experiments from the correlation of the charge passed and the continuous gas formation even after decay of current down to zero. Differences in the potential dependent and in the time dependent product formation rates in the three electrolytes point to a non-additive behavior of the solvents EC and DMC in LP30. The results clearly illustrate the potential of this set-up for detailed studies of electrolyte degradation processes in modern battery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小陈完成签到,获得积分10
1秒前
四九发布了新的文献求助10
1秒前
2秒前
2秒前
不吃别夹发布了新的文献求助10
3秒前
3秒前
4秒前
David完成签到,获得积分10
5秒前
小小学神发布了新的文献求助10
6秒前
FIGMA发布了新的文献求助10
6秒前
夏樱发布了新的文献求助10
7秒前
笑眯眯完成签到,获得积分10
7秒前
8秒前
don发布了新的文献求助10
9秒前
栀子花开XIXI完成签到,获得积分10
9秒前
ding应助yyt采纳,获得10
9秒前
11秒前
传奇3应助wise111采纳,获得10
11秒前
11秒前
海绵徐发布了新的文献求助10
11秒前
Regina发布了新的文献求助10
12秒前
13秒前
14秒前
超级苗条应助apdfew采纳,获得200
14秒前
17秒前
17秒前
甜叶菊发布了新的文献求助10
17秒前
酷波er应助是康康呀采纳,获得10
18秒前
搜集达人应助勤恳海莲采纳,获得10
18秒前
tangz发布了新的文献求助30
18秒前
静静发布了新的文献求助10
19秒前
NICKPLZ完成签到,获得积分10
19秒前
英俊的铭应助高贵的酸奶采纳,获得10
19秒前
邵洋发布了新的文献求助10
21秒前
21秒前
完美世界应助meo采纳,获得10
21秒前
yoowt发布了新的文献求助10
22秒前
大模型应助嘟嘟金子采纳,获得10
23秒前
海绵徐完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551910
求助须知:如何正确求助?哪些是违规求助? 3128345
关于积分的说明 9377313
捐赠科研通 2827348
什么是DOI,文献DOI怎么找? 1554303
邀请新用户注册赠送积分活动 725429
科研通“疑难数据库(出版商)”最低求助积分说明 714834