Variable-Length Particle Swarm Optimization for Feature Selection on High-Dimensional Classification

粒子群优化 特征选择 维数之咒 人工智能 局部最优 模式识别(心理学) 选择(遗传算法) 计算机科学 变量(数学) 特征(语言学) 代表(政治) 算法 数学 数学优化 数学分析 法学 哲学 政治 语言学 政治学
作者
Binh Tran,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 473-487 被引量:299
标识
DOI:10.1109/tevc.2018.2869405
摘要

With a global search mechanism, particle swarm optimization (PSO) has shown promise in feature selection (FS). However, most of the current PSO-based FS methods use a fix-length representation, which is inflexible and limits the performance of PSO for FS. When applying these methods to high-dimensional data, it not only consumes a significant amount of memory but also requires a high computational cost. Overcoming this limitation enables PSO to work on data with much higher dimensionality which has become more and more popular with the advance of data collection technologies. In this paper, we propose the first variable-length PSO representation for FS, enabling particles to have different and shorter lengths, which defines smaller search space and therefore, improves the performance of PSO. By rearranging features in a descending order of their relevance, we facilitate particles with shorter lengths to achieve better classification performance. Furthermore, using the proposed length changing mechanism, PSO can jump out of local optima, further narrow the search space and focus its search on smaller and more fruitful area. These strategies enable PSO to reach better solutions in a shorter time. Results on ten high-dimensional datasets with varying difficulties show that the proposed variable-length PSO can achieve much smaller feature subsets with significantly higher classification performance in much shorter time than the fixed-length PSO methods. The proposed method also outperformed the compared non-PSO FS methods in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助黄臻采纳,获得10
刚刚
空明流毓发布了新的文献求助10
1秒前
香蕉诗蕊应助万能小笼包采纳,获得10
1秒前
科研通AI6应助万能小笼包采纳,获得10
1秒前
1秒前
1秒前
蓝天发布了新的文献求助10
6秒前
8秒前
潇潇发布了新的文献求助10
11秒前
11秒前
黄臻完成签到,获得积分10
12秒前
12秒前
13秒前
黄臻发布了新的文献求助10
14秒前
汉堡包应助点墨采纳,获得10
15秒前
清修完成签到,获得积分10
17秒前
20秒前
hcmsaobang2001完成签到,获得积分0
20秒前
20秒前
小九九完成签到 ,获得积分10
21秒前
YuxinRen完成签到,获得积分10
23秒前
123完成签到,获得积分10
24秒前
24秒前
KKUMee完成签到,获得积分10
25秒前
h1909完成签到,获得积分10
25秒前
25秒前
多情的青曼完成签到,获得积分10
27秒前
beyonder发布了新的文献求助10
29秒前
29秒前
青羽发布了新的文献求助10
30秒前
32秒前
独特广山完成签到,获得积分10
34秒前
34秒前
35秒前
点墨发布了新的文献求助10
35秒前
36秒前
Dado应助Cristina采纳,获得10
36秒前
37秒前
梅川拉丝发布了新的文献求助10
37秒前
orixero应助ccc采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648587
关于积分的说明 14685691
捐赠科研通 4590541
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491224
关于科研通互助平台的介绍 1462521