Exploiting heterogeneous scientific literature networks to combat ranking bias: Evidence from the computational linguistics area

排名(信息检索) 计算机科学 情报检索 图形 机器学习 水准点(测量) 人工智能 排序支持向量机 数据挖掘 理论计算机科学 地理 地图学
作者
Xiaorui Jiang,Xiaoping Sun,Zhe Yang,Hai Zhuge,Jianmin Yao
出处
期刊:Journal of the Association for Information Science and Technology [Wiley]
卷期号:67 (7): 1679-1702 被引量:27
标识
DOI:10.1002/asi.23463
摘要

It is important to help researchers find valuable papers from a large literature collection. To this end, many graph‐based ranking algorithms have been proposed. However, most of these algorithms suffer from the problem of ranking bias . Ranking bias hurts the usefulness of a ranking algorithm because it returns a ranking list with an undesirable time distribution. This paper is a focused study on how to alleviate ranking bias by leveraging the heterogeneous network structure of the literature collection. We propose a new graph‐based ranking algorithm, M utual R ank, that integrates mutual reinforcement relationships among networks of papers, researchers, and venues to achieve a more synthetic, accurate, and less‐biased ranking than previous methods. M utual R ank provides a unified model that involves both intra‐ and inter‐network information for ranking papers, researchers, and venues simultaneously. We use the ACL A nthology N etwork as the benchmark data set and construct the gold standard from computer linguistics course websites of well‐known universities and two well‐known textbooks. The experimental results show that M utual R ank greatly outperforms the state‐of‐the‐art competitors, including P age R ank, HITS , C o R ank, F uture R ank, and P ‐ R ank, in ranking papers in both improving ranking effectiveness and alleviating ranking bias. Rankings of researchers and venues by M utual R ank are also quite reasonable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风雨1210发布了新的文献求助10
刚刚
文艺书雪完成签到 ,获得积分10
刚刚
独行侠完成签到,获得积分10
刚刚
1秒前
我测你码发布了新的文献求助10
1秒前
又要起名字完成签到,获得积分10
1秒前
1秒前
1秒前
damian完成签到,获得积分10
2秒前
LiShin发布了新的文献求助10
2秒前
渝州人应助凤凰山采纳,获得10
3秒前
sweetbearm应助凤凰山采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
yizhiGao应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
顾矜应助随机起的名采纳,获得10
3秒前
NN应助科研通管家采纳,获得10
3秒前
pinging应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
yizhiGao应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得20
4秒前
小小旋风应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
敬老院N号应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
yizhiGao应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研小白应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
文献缺缺应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
调研昵称发布了新的文献求助10
5秒前
5秒前
HUYUE完成签到 ,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794