清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Close Encounters of the Lysosome-Peroxisome Kind

生物 溶酶体 过氧化物酶体 细胞生物学 计算生物学 遗传学 生物化学 受体
作者
Yui Jin,Bethany S. Strunk,Lois S. Weisman
出处
期刊:Cell [Elsevier]
卷期号:161 (2): 197-198 被引量:10
标识
DOI:10.1016/j.cell.2015.03.046
摘要

Lysosomes provide a major source for cellular cholesterol; however, most of this cholesterol is trafficked to the plasma membrane via unknown mechanisms. Chu et al. identify an unexpected role for peroxisomes in the transport of cholesterol from the lysosome to the plasma membrane via a lysosome-peroxisome membrane contact site. Lysosomes provide a major source for cellular cholesterol; however, most of this cholesterol is trafficked to the plasma membrane via unknown mechanisms. Chu et al. identify an unexpected role for peroxisomes in the transport of cholesterol from the lysosome to the plasma membrane via a lysosome-peroxisome membrane contact site. Cholesterol is an essential determinant of membrane fluidity, permeability, and organization in animal cells. While the vast majority of cellular cholesterol (about 60%–80%) is localized at the plasma membrane (PM) (Maxfield and Wüstner, 2002Maxfield F.R. Wüstner D. J. Clin. Invest. 2002; 110: 891-898Crossref PubMed Scopus (279) Google Scholar), cholesterol originates from the ER via biosynthesis and the lysosome via import of exogenous cholesterol. These observations raise a fundamental question, how is cholesterol transported from the ER or lysosome to the PM? In this issue of Cell, Chu et al., 2015Chu B.-B. Liao Y.-C. Qi W. Xie C. Du X. Wang J. Yang H. Miao H.-H. Li B.-L. Song B.-L. Cell. 2015; 161 (this issue): 291-306Abstract Full Text Full Text PDF PubMed Scopus (232) Google Scholar discover that peroxisomes play a critical role in the transport of cholesterol from the lysosome to the PM and uncover an unexpected membrane contact site between the peroxisome and lysosome (Figure 1). Exogenous cholesterol enters the cell as low density lipoproteins (LDL) via endocytosis of the LDL receptor. Upon delivery to the lysosome, LDL-derived cholesterol esters are de-esterified into free cholesterol then exported to other compartments including the PM (Maxfield and Wüstner, 2002Maxfield F.R. Wüstner D. J. Clin. Invest. 2002; 110: 891-898Crossref PubMed Scopus (279) Google Scholar). The physiological importance of cholesterol transport out of the lysosome is underscored by Niemann-Pick disease type C (NPC). NPC is a fatal, predominantly neurodegenerative disorder caused by mutations in NPC1 or NPC2, which results in cholesterol accumulation in the lysosome. NPC1 and NPC2 work together to transport free cholesterol out of the lumen to the limiting membrane of the lysosome (Du et al., 2011Du X. Kumar J. Ferguson C. Schulz T.A. Ong Y.S. Hong W. Prinz W.A. Parton R.G. Brown A.J. Yang H. J. Cell Biol. 2011; 192: 121-135Crossref PubMed Scopus (224) Google Scholar, Kwon et al., 2009Kwon H.J. Abi-Mosleh L. Wang M.L. Deisenhofer J. Goldstein J.L. Brown M.S. Infante R.E. Cell. 2009; 137: 1213-1224Abstract Full Text Full Text PDF PubMed Scopus (485) Google Scholar, Vanier, 2015Vanier M.T. J. Inherit. Metab. Dis. 2015; 38: 187-199Crossref PubMed Scopus (189) Google Scholar). The molecular mechanisms of subsequent steps, exit of cholesterol from the lysosomal membrane and delivery to the PM, were largely uncharacterized. To identify proteins required for transport of LDL-derived cholesterol, Chu et al., 2015Chu B.-B. Liao Y.-C. Qi W. Xie C. Du X. Wang J. Yang H. Miao H.-H. Li B.-L. Song B.-L. Cell. 2015; 161 (this issue): 291-306Abstract Full Text Full Text PDF PubMed Scopus (232) Google Scholar design an elegant screen that takes advantage of the antibiotic Amphotericin C, which permeablilizes the PM through association with exposed cholesterol, as well as U18666A, which enables them to stage the release of LDL-derived cholesterol from the lysosome. Using shRNA, they identify 341 candidate genes. Surprisingly, several candidates are related to peroxisomal function and biogenesis. Knockdown of these peroxisome related genes results in the accumulation of cholesterol in the lysosome lumen. Analysis of cultured wild-type cells by both fluorescence microscopy and transmission electron microscopy reveals a previously unrecognized membrane contact site between lysosomes and peroxisomes. Further evidence for the lysosome-peroxisome contact site is provided by multiple in vitro studies demonstrating an interaction between these organelles. Chu et al. find that the lysosome-peroxisome contact site is bridged, at least in part, by the integral lysosomal membrane protein, synaptotagmin 7 (syt7), through binding to PI(4,5)P2 on the peroxisomal membrane. The lysosome-peroxisome contact site is transient and cholesterol-dependent. Notably, efficient formation of the lysosome-peroxisome contact site also requires NPC1 suggesting that this contact is important for cholesterol exit from the lysosome. Three of the peroxisomal genes identified in this study have been implicated in human diseases. X-linked adrenoleukodystrophy, Infantile Refsum disease, and Zellweger syndrome are caused by mutations in ABCD1, PEX1, and PEX26 (Aubourg and Wanders, 2013Aubourg P. Wanders R. Handb. Clin. Neurol. 2013; 113: 1593-1609Crossref PubMed Scopus (47) Google Scholar). Strikingly, Chu et al., 2015Chu B.-B. Liao Y.-C. Qi W. Xie C. Du X. Wang J. Yang H. Miao H.-H. Li B.-L. Song B.-L. Cell. 2015; 161 (this issue): 291-306Abstract Full Text Full Text PDF PubMed Scopus (232) Google Scholar show that cells from patients suffering from each of these diseases accumulate cholesterol in lysosomes to a similar extent as those from NPC patients. The potential contribution of defects in cholesterol trafficking to symptoms of these diseases must now be considered. The precise roles of the lysosome-peroxisome contact site in facilitating cholesterol transport out of the lysosome on its path to the PM remains to be determined. Chu et al., 2015Chu B.-B. Liao Y.-C. Qi W. Xie C. Du X. Wang J. Yang H. Miao H.-H. Li B.-L. Song B.-L. Cell. 2015; 161 (this issue): 291-306Abstract Full Text Full Text PDF PubMed Scopus (232) Google Scholar provide evidence from in vitro, as well as cell-based studies, that cholesterol is transferred from lysosomes to peroxisomes via the lysosome-peroxisome membrane contact site, raising the possibility that cholesterol may transit through the peroxisome on its way to the PM. It is also possible that the contact site facilitates transport of cholesterol out of the lysosome directly to a different organelle, such as the ER. In support of this possibility, knockdown of the oxysterol binding protein-related protein 5 (ORP5), which is localized to the ER, has been shown to result in accumulation of NPC1 dependent pools of cholesterol in the limiting membrane of the lysosome (Du et al., 2011Du X. Kumar J. Ferguson C. Schulz T.A. Ong Y.S. Hong W. Prinz W.A. Parton R.G. Brown A.J. Yang H. J. Cell Biol. 2011; 192: 121-135Crossref PubMed Scopus (224) Google Scholar). Orp5 may act in a parallel pathway, or downstream of Syt7 and ABCD1 in the transfer of cholesterol out of the lysosome, either to the ER or to the peroxisome. Different pathways of cholesterol transport out of the lysosome may function in different cell types or under different conditions and perhaps only a subset of these pathways are directed to the PM. A comprehensive assessment of the molecular components of the lysosome-peroxisome contact, including the consideration of a possible three-way lysosome-peroxisome-ER junction, is necessary. This knowledge will be critical to understanding the peroxisome-dependent mechanisms of cholesterol transport out of the lysosome and for the development of disease therapies. The lysosome-peroxisome contact site joins a growing list of inter-organelle contact sites. The known membrane contact sites currently include: ER-mitochondria, ER-PM, ER-lysosome/vacuole, ER-endosome, ER-Golgi, mitochondria-lysosome/vacuole, and mitochondria-PM (Prinz, 2014Prinz W.A. J. Cell Biol. 2014; 205: 759-769Crossref PubMed Scopus (279) Google Scholar). Note that the lysosome-peroxisome contact site is now the third example of a critical contact between the lysosome and another organelle. Among the identified contact sites, some share partial functional redundancy. For example, the ER-mitochondrial encounter structure (ERMES) and the vacuole and mitochondria patch (vCLAMP) are distinct membrane contact sites that connect the mitochondria to the ER and the yeast vacuole, respectively (Elbaz-Alon et al., 2014Elbaz-Alon Y. Rosenfeld-Gur E. Shinder V. Futerman A.H. Geiger T. Schuldiner M. Dev. Cell. 2014; 30: 95-102Abstract Full Text Full Text PDF PubMed Scopus (261) Google Scholar, Hönscher et al., 2014Hönscher C. Mari M. Auffarth K. Bohnert M. Griffith J. Geerts W. van der Laan M. Cabrera M. Reggiori F. Ungermann C. Dev. Cell. 2014; 30: 86-94Abstract Full Text Full Text PDF PubMed Scopus (232) Google Scholar). Loss of either the ERMES or the vCLAMP has minimal phenotypic consequences, whereas simultaneous loss of both is lethal. Additional inter-organelle contacts are likely to be discovered. In addition to specialized functions including calcium homeostasis and storage, intracellular signaling, organelle division, and lipid biosynthesis, membrane contact sites have repeatedly been shown to facilitate lipid transfer between membranes (Elbaz and Schuldiner, 2011Elbaz Y. Schuldiner M. Trends Biochem. Sci. 2011; 36: 616-623Abstract Full Text Full Text PDF PubMed Scopus (174) Google Scholar, Prinz, 2014Prinz W.A. J. Cell Biol. 2014; 205: 759-769Crossref PubMed Scopus (279) Google Scholar). It is tempting to speculate that inter-organelle contacts are the major routes of lipid transfer between cellular compartments and fundamental to the accurate distribution of distinct lipid species throughout the cell. Currently, we are limited in our ability to observe the movements of lipids within cells because robust assays for tracking most lipids via microscopy do not yet exist. The development of methods facilitating such observations will be invaluable to advancement of the field. This work was supported by NIH grants R01-NS064015, R01-GM050403, and R37- GM062261 (to L.S.W.). B.S.S. was supported by a postdoctoral fellowship from the Jane Coffin Childs Memorial Fund for Medical Research. Cholesterol Transport through Lysosome-Peroxisome Membrane ContactsChu et al.CellApril 09, 2015In BriefLysosome forms dynamic membrane contacts with peroxisome, and cholesterol is transported from lysosome to peroxisome. Massive cholesterol accumulates in the cells from patients with peroxisomal disorders. Full-Text PDF Open Archive
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助紫荆采纳,获得10
3秒前
mito给mito的求助进行了留言
5秒前
奶糖喵完成签到 ,获得积分10
16秒前
16秒前
通科研完成签到 ,获得积分10
19秒前
紫荆发布了新的文献求助10
20秒前
852应助ZSJ采纳,获得10
38秒前
高处X发布了新的文献求助20
40秒前
47秒前
ZSJ发布了新的文献求助10
51秒前
温馨完成签到 ,获得积分10
55秒前
wodetaiyangLLL完成签到 ,获得积分10
1分钟前
野鸽儿完成签到 ,获得积分10
1分钟前
1分钟前
高处X完成签到,获得积分20
1分钟前
yinyin完成签到 ,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
毛豆爸爸发布了新的文献求助10
1分钟前
Alisha完成签到,获得积分10
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
快乐的完成签到 ,获得积分10
2分钟前
顺心蜜粉完成签到,获得积分10
2分钟前
虞不斜完成签到 ,获得积分10
2分钟前
七月星河完成签到 ,获得积分10
2分钟前
思无邪完成签到 ,获得积分10
3分钟前
七子完成签到 ,获得积分10
3分钟前
3分钟前
LJ_2完成签到 ,获得积分10
3分钟前
斯文败类应助ZSJ采纳,获得10
3分钟前
3分钟前
ZSJ发布了新的文献求助10
3分钟前
yzxzdm完成签到 ,获得积分0
3分钟前
空曲完成签到 ,获得积分20
4分钟前
ZSJ完成签到,获得积分20
4分钟前
yqcsysu完成签到 ,获得积分10
4分钟前
暮桉发布了新的文献求助10
4分钟前
菜鸟队长发布了新的文献求助30
4分钟前
菜鸟队长完成签到,获得积分10
4分钟前
哈哈哈哈哈哈哈完成签到 ,获得积分10
4分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171632
求助须知:如何正确求助?哪些是违规求助? 2822463
关于积分的说明 7939252
捐赠科研通 2483077
什么是DOI,文献DOI怎么找? 1322962
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647