Spectrometer-Driven Spectral Partitioning for Hyperspectral Image Classification

高光谱成像 分光计 计算机科学 光谱成像 人工智能 成像光谱仪 维数之咒 模式识别(心理学) 遥感 全光谱成像 成像光谱学 像素 光谱特征 光学 物理 地质学
作者
Yi Liu,Jun Li,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 668-680 被引量:9
标识
DOI:10.1109/jstars.2015.2437614
摘要

Classification is an important and widely used technique for remotely sensed hyperspectral data interpretation. Although most techniques developed for hyperspectral image classification assume that the spectral signatures provided by an imaging spectrometer can be interpreted as a unique and continuous signal, in practice, this signal may be obtained after the combination of several individual responses obtained from different spectrometers. In this work, we propose a new spectral partitioning strategy prior to classification which takes into account the physical design of the imaging spectrometer system for partitioning the spectral bands collected by each spectrometer, and resampling them into different groups or partitions. The final classification result is obtained as a combination of the results obtained from each individual partition by means of a multiple classifier system (MCS). The proposed strategy not only incorporates the design of the imaging spectrometer into the classification process but also circumvents problems such as the curse of dimensionality given by the unbalance between the high number of spectral bands and the generally limited number of training samples available for classification purposes. This concept is illustrated in this work using two different imaging spectrometers: the airborne visible infra-red imaging spectrometer, operated by NASA, and the digital airborne imaging system (DAIS), operated by the German Aerospace Center. Our experiments indicate that the proposed spectral partitioning strategy can lead to classification improvements on the order of 5% overall accuracy when using state-of-the-art spatial-spectral classifiers with very limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凌代萱发布了新的文献求助10
1秒前
狂野的巨人完成签到 ,获得积分10
1秒前
灿烂完成签到,获得积分10
1秒前
柳暗花明1302完成签到,获得积分10
1秒前
未闻明日之花完成签到,获得积分10
2秒前
75986686完成签到,获得积分10
2秒前
hearz发布了新的文献求助10
2秒前
负责金毛完成签到,获得积分10
2秒前
fan051500完成签到,获得积分10
3秒前
清脆乐曲完成签到,获得积分10
3秒前
arzw完成签到,获得积分10
3秒前
勤奋的天亦完成签到,获得积分10
4秒前
4秒前
哒哒哒完成签到,获得积分10
4秒前
天水张家辉完成签到,获得积分10
4秒前
4秒前
乐一李完成签到,获得积分10
5秒前
ding应助无敌是多么寂寞采纳,获得10
5秒前
zyyyyyyyy完成签到 ,获得积分10
5秒前
会飞的蜗牛完成签到,获得积分10
5秒前
沉默的凝荷完成签到,获得积分10
5秒前
布小丁完成签到,获得积分20
6秒前
lv完成签到,获得积分10
6秒前
pikachu完成签到,获得积分10
6秒前
KYTHUI完成签到,获得积分10
6秒前
贺兰鸵鸟完成签到,获得积分10
7秒前
Rain1god完成签到,获得积分10
7秒前
kma完成签到,获得积分10
7秒前
南方周末完成签到,获得积分10
7秒前
凌代萱完成签到 ,获得积分10
8秒前
阿哲完成签到,获得积分10
8秒前
myuniv发布了新的文献求助10
8秒前
莫x莫完成签到 ,获得积分10
8秒前
Tingshan完成签到,获得积分10
8秒前
静待花开完成签到 ,获得积分10
8秒前
9秒前
叶子完成签到,获得积分10
9秒前
SciGPT应助会飞的蜗牛采纳,获得10
10秒前
布小丁发布了新的文献求助10
10秒前
Treasure完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4946045
求助须知:如何正确求助?哪些是违规求助? 4210330
关于积分的说明 13087390
捐赠科研通 3990895
什么是DOI,文献DOI怎么找? 2184843
邀请新用户注册赠送积分活动 1200218
关于科研通互助平台的介绍 1113922