Spectrometer-Driven Spectral Partitioning for Hyperspectral Image Classification

高光谱成像 分光计 计算机科学 光谱成像 人工智能 成像光谱仪 维数之咒 模式识别(心理学) 遥感 全光谱成像 成像光谱学 像素 光谱特征 光学 物理 地质学
作者
Yi Liu,Jun Li,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 668-680 被引量:9
标识
DOI:10.1109/jstars.2015.2437614
摘要

Classification is an important and widely used technique for remotely sensed hyperspectral data interpretation. Although most techniques developed for hyperspectral image classification assume that the spectral signatures provided by an imaging spectrometer can be interpreted as a unique and continuous signal, in practice, this signal may be obtained after the combination of several individual responses obtained from different spectrometers. In this work, we propose a new spectral partitioning strategy prior to classification which takes into account the physical design of the imaging spectrometer system for partitioning the spectral bands collected by each spectrometer, and resampling them into different groups or partitions. The final classification result is obtained as a combination of the results obtained from each individual partition by means of a multiple classifier system (MCS). The proposed strategy not only incorporates the design of the imaging spectrometer into the classification process but also circumvents problems such as the curse of dimensionality given by the unbalance between the high number of spectral bands and the generally limited number of training samples available for classification purposes. This concept is illustrated in this work using two different imaging spectrometers: the airborne visible infra-red imaging spectrometer, operated by NASA, and the digital airborne imaging system (DAIS), operated by the German Aerospace Center. Our experiments indicate that the proposed spectral partitioning strategy can lead to classification improvements on the order of 5% overall accuracy when using state-of-the-art spatial-spectral classifiers with very limited training samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助yahosun采纳,获得10
1秒前
深情安青应助yahosun采纳,获得10
1秒前
在水一方应助yahosun采纳,获得10
1秒前
852应助yahosun采纳,获得10
1秒前
我是老大应助yahosun采纳,获得10
1秒前
3秒前
3秒前
ionize发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
张弛完成签到,获得积分10
8秒前
研友_ZeoKYL完成签到,获得积分10
8秒前
栗子发布了新的文献求助30
9秒前
9秒前
10秒前
heyya发布了新的文献求助10
10秒前
向天歌发布了新的文献求助20
11秒前
WFZ完成签到,获得积分10
12秒前
zzzzz完成签到,获得积分10
12秒前
hhh完成签到,获得积分10
14秒前
rapkat1221发布了新的文献求助10
15秒前
xiongyh10完成签到,获得积分10
16秒前
小透明发布了新的文献求助50
16秒前
19秒前
19秒前
20秒前
ionize完成签到,获得积分10
21秒前
hhh完成签到,获得积分10
22秒前
captain发布了新的文献求助10
23秒前
风起云涌完成签到,获得积分10
23秒前
2620完成签到,获得积分10
24秒前
SciGPT应助海蓝云天采纳,获得10
25秒前
量子星尘发布了新的文献求助20
25秒前
25秒前
1793480753发布了新的文献求助10
26秒前
小胡完成签到,获得积分10
26秒前
zx完成签到 ,获得积分10
26秒前
刻苦灵枫完成签到,获得积分10
29秒前
玖月发布了新的文献求助10
32秒前
万能图书馆应助一点通采纳,获得10
33秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586418
求助须知:如何正确求助?哪些是违规求助? 4669685
关于积分的说明 14779607
捐赠科研通 4619993
什么是DOI,文献DOI怎么找? 2530909
邀请新用户注册赠送积分活动 1499681
关于科研通互助平台的介绍 1467850