亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches

亚像素渲染 人工智能 计算机科学 卷积神经网络 模式识别(心理学) 匹配(统计) 滤波器(信号处理) 一致性(知识库) 集合(抽象数据类型) 相似性(几何) 计算机视觉 人工神经网络 数据集 图像(数学) 像素 数学 统计 程序设计语言
作者
Jure Žbontar,Yann LeCun
出处
期刊:Cornell University - arXiv 被引量:908
摘要

We present a method for extracting depth information from a rectified image pair. Our approach focuses on the first stage of many stereo algorithms: the matching cost computation. We approach the problem by learning a similarity measure on small image patches using a convolutional neural network. Training is carried out in a supervised manner by constructing a binary classification data set with examples of similar and dissimilar pairs of patches. We examine two network architectures for this task: one tuned for speed, the other for accuracy. The output of the convolutional neural network is used to initialize the stereo matching cost. A series of post-processing steps follow: cross-based cost aggregation, semiglobal matching, a left-right consistency check, subpixel enhancement, a median filter, and a bilateral filter. We evaluate our method on the KITTI 2012, KITTI 2015, and Middlebury stereo data sets and show that it outperforms other approaches on all three data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
16秒前
彭于晏应助欣喜秋天采纳,获得10
16秒前
Jolly发布了新的文献求助30
20秒前
wanci应助555采纳,获得10
23秒前
58秒前
欣喜秋天发布了新的文献求助10
1分钟前
1分钟前
123123发布了新的文献求助10
1分钟前
1分钟前
123123完成签到,获得积分10
1分钟前
zzzzz发布了新的文献求助10
1分钟前
1分钟前
英俊的铭应助欣喜秋天采纳,获得10
1分钟前
1分钟前
CHX发布了新的文献求助10
1分钟前
欣喜秋天完成签到,获得积分10
1分钟前
ls完成签到,获得积分10
1分钟前
1分钟前
WYDNBDX2013发布了新的文献求助10
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Ava应助WYDNBDX2013采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
TwentyNine完成签到,获得积分10
2分钟前
mono发布了新的文献求助30
2分钟前
2分钟前
mono完成签到,获得积分10
2分钟前
MOMO发布了新的文献求助10
2分钟前
阔达的沛文完成签到,获得积分10
2分钟前
3分钟前
3分钟前
biebie发布了新的文献求助20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459225
求助须知:如何正确求助?哪些是违规求助? 4564934
关于积分的说明 14297314
捐赠科研通 4490026
什么是DOI,文献DOI怎么找? 2459507
邀请新用户注册赠送积分活动 1449159
关于科研通互助平台的介绍 1424647