计算生物学
核酶
Cas9
生物
清脆的
基因组工程
代谢工程
核糖核酸
基因
计算机科学
遗传学
作者
Matthew Deaner,Allison Holzman,Hal S. Alper
标识
DOI:10.1002/biot.201700582
摘要
Metabolic engineering typically utilizes a suboptimal step‐wise gene target optimization approach to parse a highly connected and regulated cellular metabolism. While the endonuclease‐null CRISPR/Cas system has enabled gene expression perturbations without genetic modification, it has been mostly limited to small sets of gene targets in eukaryotes due to inefficient methods to assemble and express large sgRNA operons. In this work, we develop a TEF1p‐tRNA expression system and demonstrate that the use of tRNAs as splicing elements flanking sgRNAs provides higher efficiency than both Pol III and ribozyme‐based expression across a variety of single sgRNA and multiplexed contexts. Next, we devise and validate a scheme to allow modular construction of tRNA‐sgRNA (TST) operons using an iterative Type IIs digestion/ligation extension approach, termed CRISPR‐ L igation E xtension of s g RNA O perons (LEGO). This approach enables facile construction of large TST operons. We demonstrate this utility by constructing a metabolic rewiring prototype for 2,3‐butanediol production in 2 distinct yeast strain backgrounds. These results demonstrate that our approach can act as a surrogate for traditional genetic modification on a much shorter design‐cycle timescale.
科研通智能强力驱动
Strongly Powered by AbleSci AI