IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network.

计算机科学 人工智能 残余物 卷积神经网络 单眼 计算机视觉 模式识别(心理学) 深度学习
作者
Lichao Mou,Xiao Xiang Zhu
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:41
摘要

In this paper we tackle a very novel problem, namely height estimation from a single monocular remote sensing image, which is inherently ambiguous, and a technically ill-posed problem, with a large source of uncertainty coming from the overall scale. We propose a fully convolutional-deconvolutional network architecture being trained end-to-end, encompassing residual learning, to model the ambiguous mapping between monocular remote sensing images and height maps. Specifically, it is composed of two parts, i.e., convolutional sub-network and deconvolutional sub-network. The former corresponds to feature extractor that transforms the input remote sensing image to high-level multidimensional feature representation, whereas the latter plays the role of a height generator that produces height map from the feature extracted from the convolutional sub-network. Moreover, to preserve fine edge details of estimated height maps, we introduce a skip connection to the network, which is able to shuttle low-level visual information, e.g., object boundaries and edges, directly across the network. To demonstrate the usefulness of single-view height prediction, we show a practical example of instance segmentation of buildings using estimated height map. This paper, for the first time in the remote sensing community, attempts to estimate height from monocular vision. The proposed network is validated using a large-scale high resolution aerial image data set covered an area of Berlin. Both visual and quantitative analysis of the experimental results demonstrate the effectiveness of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助xue采纳,获得10
刚刚
六块石头发布了新的文献求助10
刚刚
寻找布冯完成签到,获得积分10
1秒前
gengwenjing发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
Pt发布了新的文献求助20
1秒前
我铁好人发布了新的文献求助30
2秒前
Asue完成签到,获得积分10
2秒前
SD完成签到 ,获得积分10
2秒前
2秒前
Orange应助合适的冰枫采纳,获得10
3秒前
1127发布了新的文献求助10
3秒前
3秒前
852应助飞虎采纳,获得10
3秒前
魔幻大白发布了新的文献求助30
3秒前
复杂易形完成签到,获得积分10
3秒前
是柯基不是科技完成签到,获得积分10
3秒前
丘比特应助Sten采纳,获得10
4秒前
5秒前
orange完成签到,获得积分10
6秒前
所所应助cc采纳,获得10
6秒前
8秒前
独特妙芙发布了新的文献求助10
8秒前
科研完成签到,获得积分10
8秒前
酷波er应助笨维采纳,获得10
8秒前
8秒前
Owen应助水牛采纳,获得10
8秒前
ZW完成签到,获得积分10
8秒前
SUCUICUI完成签到,获得积分10
9秒前
猹aa完成签到,获得积分10
9秒前
wyuwqhjp完成签到,获得积分10
10秒前
10秒前
自由冬亦完成签到,获得积分10
10秒前
SUCUICUI发布了新的文献求助10
12秒前
12秒前
12秒前
lqy完成签到,获得积分10
13秒前
李xs发布了新的文献求助30
13秒前
13秒前
zhang完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618765
求助须知:如何正确求助?哪些是违规求助? 4703717
关于积分的说明 14923499
捐赠科研通 4758451
什么是DOI,文献DOI怎么找? 2550251
邀请新用户注册赠送积分活动 1513068
关于科研通互助平台的介绍 1474390