亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network.

计算机科学 人工智能 残余物 卷积神经网络 单眼 计算机视觉 模式识别(心理学) 深度学习
作者
Lichao Mou,Xiao Xiang Zhu
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:41
摘要

In this paper we tackle a very novel problem, namely height estimation from a single monocular remote sensing image, which is inherently ambiguous, and a technically ill-posed problem, with a large source of uncertainty coming from the overall scale. We propose a fully convolutional-deconvolutional network architecture being trained end-to-end, encompassing residual learning, to model the ambiguous mapping between monocular remote sensing images and height maps. Specifically, it is composed of two parts, i.e., convolutional sub-network and deconvolutional sub-network. The former corresponds to feature extractor that transforms the input remote sensing image to high-level multidimensional feature representation, whereas the latter plays the role of a height generator that produces height map from the feature extracted from the convolutional sub-network. Moreover, to preserve fine edge details of estimated height maps, we introduce a skip connection to the network, which is able to shuttle low-level visual information, e.g., object boundaries and edges, directly across the network. To demonstrate the usefulness of single-view height prediction, we show a practical example of instance segmentation of buildings using estimated height map. This paper, for the first time in the remote sensing community, attempts to estimate height from monocular vision. The proposed network is validated using a large-scale high resolution aerial image data set covered an area of Berlin. Both visual and quantitative analysis of the experimental results demonstrate the effectiveness of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖的惊蛰完成签到 ,获得积分10
21秒前
huxuehong完成签到 ,获得积分10
23秒前
成就的秋应助科研通管家采纳,获得10
1分钟前
YS完成签到 ,获得积分10
1分钟前
1分钟前
AmyHu完成签到,获得积分10
1分钟前
1分钟前
温婉的不弱完成签到,获得积分20
2分钟前
心灵美语兰完成签到 ,获得积分10
2分钟前
2分钟前
mumu发布了新的文献求助10
2分钟前
myg123完成签到 ,获得积分10
2分钟前
kukudou2发布了新的文献求助10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
成就的秋应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
kukudou2完成签到,获得积分20
3分钟前
3分钟前
貔貅完成签到 ,获得积分10
3分钟前
3分钟前
玉玲子LIN完成签到 ,获得积分10
4分钟前
4分钟前
凤梨发布了新的文献求助10
4分钟前
成就的秋应助科研通管家采纳,获得10
5分钟前
orixero应助科研通管家采纳,获得10
5分钟前
捡子完成签到 ,获得积分10
5分钟前
泡泡完成签到 ,获得积分10
5分钟前
龚广山完成签到,获得积分10
6分钟前
幽默赛君完成签到 ,获得积分10
6分钟前
浮游应助科研通管家采纳,获得10
7分钟前
成就的秋应助科研通管家采纳,获得10
7分钟前
浮游应助科研通管家采纳,获得10
7分钟前
7分钟前
沿途有你完成签到 ,获得积分10
7分钟前
上官若男应助初雪平寒采纳,获得10
7分钟前
8分钟前
8分钟前
药石无医完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4540499
求助须知:如何正确求助?哪些是违规求助? 3974360
关于积分的说明 12310458
捐赠科研通 3641505
什么是DOI,文献DOI怎么找? 2005210
邀请新用户注册赠送积分活动 1040593
科研通“疑难数据库(出版商)”最低求助积分说明 929822