IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network.

计算机科学 人工智能 残余物 卷积神经网络 单眼 计算机视觉 模式识别(心理学) 深度学习
作者
Lichao Mou,Xiao Xiang Zhu
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:41
摘要

In this paper we tackle a very novel problem, namely height estimation from a single monocular remote sensing image, which is inherently ambiguous, and a technically ill-posed problem, with a large source of uncertainty coming from the overall scale. We propose a fully convolutional-deconvolutional network architecture being trained end-to-end, encompassing residual learning, to model the ambiguous mapping between monocular remote sensing images and height maps. Specifically, it is composed of two parts, i.e., convolutional sub-network and deconvolutional sub-network. The former corresponds to feature extractor that transforms the input remote sensing image to high-level multidimensional feature representation, whereas the latter plays the role of a height generator that produces height map from the feature extracted from the convolutional sub-network. Moreover, to preserve fine edge details of estimated height maps, we introduce a skip connection to the network, which is able to shuttle low-level visual information, e.g., object boundaries and edges, directly across the network. To demonstrate the usefulness of single-view height prediction, we show a practical example of instance segmentation of buildings using estimated height map. This paper, for the first time in the remote sensing community, attempts to estimate height from monocular vision. The proposed network is validated using a large-scale high resolution aerial image data set covered an area of Berlin. Both visual and quantitative analysis of the experimental results demonstrate the effectiveness of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助南宫问天采纳,获得10
1秒前
1秒前
刘智舰发布了新的文献求助10
2秒前
时尚的飞机完成签到 ,获得积分10
3秒前
3秒前
希望天下0贩的0应助30采纳,获得10
4秒前
5秒前
伏尾窗的猫完成签到,获得积分20
6秒前
7秒前
7秒前
落雨冥发布了新的文献求助10
7秒前
11发布了新的文献求助10
7秒前
watercolding发布了新的文献求助10
8秒前
8秒前
小杨完成签到 ,获得积分10
9秒前
辞清完成签到 ,获得积分10
11秒前
潇洒的问夏完成签到,获得积分10
12秒前
12秒前
13秒前
qaq发布了新的文献求助10
13秒前
英姑应助11采纳,获得10
14秒前
15秒前
浅笑心柔发布了新的文献求助10
15秒前
华仔应助落雨冥采纳,获得10
17秒前
19秒前
月影逝水发布了新的文献求助10
19秒前
默默不二发布了新的文献求助10
20秒前
光锥之外发布了新的文献求助10
21秒前
丘比特应助adsf采纳,获得10
22秒前
22秒前
Lucas应助励志小薛采纳,获得10
22秒前
Hathaway发布了新的文献求助10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
xx完成签到,获得积分10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
长情笑柳应助科研通管家采纳,获得10
23秒前
demonsnow应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425117
求助须知:如何正确求助?哪些是违规求助? 4539252
关于积分的说明 14166344
捐赠科研通 4456403
什么是DOI,文献DOI怎么找? 2444186
邀请新用户注册赠送积分活动 1435189
关于科研通互助平台的介绍 1412553