IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network.

计算机科学 人工智能 残余物 卷积神经网络 单眼 计算机视觉 模式识别(心理学) 深度学习
作者
Lichao Mou,Xiao Xiang Zhu
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:41
摘要

In this paper we tackle a very novel problem, namely height estimation from a single monocular remote sensing image, which is inherently ambiguous, and a technically ill-posed problem, with a large source of uncertainty coming from the overall scale. We propose a fully convolutional-deconvolutional network architecture being trained end-to-end, encompassing residual learning, to model the ambiguous mapping between monocular remote sensing images and height maps. Specifically, it is composed of two parts, i.e., convolutional sub-network and deconvolutional sub-network. The former corresponds to feature extractor that transforms the input remote sensing image to high-level multidimensional feature representation, whereas the latter plays the role of a height generator that produces height map from the feature extracted from the convolutional sub-network. Moreover, to preserve fine edge details of estimated height maps, we introduce a skip connection to the network, which is able to shuttle low-level visual information, e.g., object boundaries and edges, directly across the network. To demonstrate the usefulness of single-view height prediction, we show a practical example of instance segmentation of buildings using estimated height map. This paper, for the first time in the remote sensing community, attempts to estimate height from monocular vision. The proposed network is validated using a large-scale high resolution aerial image data set covered an area of Berlin. Both visual and quantitative analysis of the experimental results demonstrate the effectiveness of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
教生物的杨教授给教生物的杨教授的求助进行了留言
1秒前
飞小骆驼完成签到,获得积分10
1秒前
路过地球完成签到 ,获得积分10
1秒前
阿美完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
gs发布了新的文献求助10
3秒前
3秒前
研友_841zXL完成签到,获得积分0
3秒前
童宝完成签到,获得积分10
4秒前
天天快乐应助吃菠萝大王采纳,获得10
4秒前
酷波er应助火星上云朵采纳,获得10
4秒前
Hyh_发布了新的文献求助10
4秒前
爱库珀发布了新的文献求助10
5秒前
histhb完成签到,获得积分10
5秒前
搜集达人应助华杰采纳,获得10
5秒前
6秒前
江川直子完成签到,获得积分10
6秒前
xxl1031237415发布了新的文献求助10
7秒前
7秒前
NIHAO发布了新的文献求助10
7秒前
Parsifal发布了新的文献求助30
8秒前
limz完成签到,获得积分10
8秒前
8秒前
Jiayou Zhang发布了新的文献求助10
9秒前
王kk发布了新的文献求助10
9秒前
唐氏梦蝴蝶关注了科研通微信公众号
9秒前
小马甲应助断了的弦采纳,获得10
9秒前
烟花应助yyryyrr采纳,获得10
10秒前
科研通AI6应助复杂的宝莹采纳,获得10
10秒前
11秒前
11秒前
Argetlam2012完成签到 ,获得积分10
11秒前
11秒前
脑洞疼应助专一的无颜采纳,获得10
12秒前
wackykao发布了新的文献求助10
12秒前
12秒前
无极微光应助文静达采纳,获得20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519544
求助须知:如何正确求助?哪些是违规求助? 4611607
关于积分的说明 14529535
捐赠科研通 4549077
什么是DOI,文献DOI怎么找? 2492697
邀请新用户注册赠送积分活动 1473841
关于科研通互助平台的介绍 1445668