IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network.

计算机科学 人工智能 残余物 卷积神经网络 单眼 计算机视觉 模式识别(心理学) 深度学习
作者
Lichao Mou,Xiao Xiang Zhu
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:41
摘要

In this paper we tackle a very novel problem, namely height estimation from a single monocular remote sensing image, which is inherently ambiguous, and a technically ill-posed problem, with a large source of uncertainty coming from the overall scale. We propose a fully convolutional-deconvolutional network architecture being trained end-to-end, encompassing residual learning, to model the ambiguous mapping between monocular remote sensing images and height maps. Specifically, it is composed of two parts, i.e., convolutional sub-network and deconvolutional sub-network. The former corresponds to feature extractor that transforms the input remote sensing image to high-level multidimensional feature representation, whereas the latter plays the role of a height generator that produces height map from the feature extracted from the convolutional sub-network. Moreover, to preserve fine edge details of estimated height maps, we introduce a skip connection to the network, which is able to shuttle low-level visual information, e.g., object boundaries and edges, directly across the network. To demonstrate the usefulness of single-view height prediction, we show a practical example of instance segmentation of buildings using estimated height map. This paper, for the first time in the remote sensing community, attempts to estimate height from monocular vision. The proposed network is validated using a large-scale high resolution aerial image data set covered an area of Berlin. Both visual and quantitative analysis of the experimental results demonstrate the effectiveness of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
追寻电脑发布了新的文献求助10
刚刚
佳佳佳发布了新的文献求助30
3秒前
脑洞疼应助袁超采纳,获得30
4秒前
潇洒的白凝完成签到,获得积分10
8秒前
123完成签到,获得积分10
9秒前
9秒前
qphys完成签到,获得积分10
10秒前
hyf发布了新的文献求助10
10秒前
mjf111完成签到,获得积分10
13秒前
14秒前
wsj发布了新的文献求助10
14秒前
烟酒不离生完成签到,获得积分10
15秒前
16秒前
Jasper应助xyj6486采纳,获得10
17秒前
17秒前
19秒前
于平川春野完成签到 ,获得积分10
19秒前
汉堡包应助我不吃胡萝卜采纳,获得10
21秒前
21秒前
英姑应助潇湘雪月采纳,获得10
21秒前
Xw发布了新的文献求助10
21秒前
22秒前
种花家的狗狗完成签到,获得积分10
22秒前
wanci应助wsj采纳,获得10
24秒前
李昕123完成签到 ,获得积分10
25秒前
超帅青烟发布了新的文献求助10
25秒前
友好的睫毛完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
木皆完成签到,获得积分10
29秒前
31秒前
ChatGPT发布了新的文献求助10
32秒前
王炎完成签到 ,获得积分10
33秒前
李健的小迷弟应助星星采纳,获得10
33秒前
36秒前
38秒前
39秒前
爱笑晓曼发布了新的文献求助20
42秒前
老大蒂亚戈应助YJ888采纳,获得10
43秒前
JamesPei应助潇湘雪月采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174