IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network.

计算机科学 人工智能 残余物 卷积神经网络 单眼 计算机视觉 模式识别(心理学) 深度学习
作者
Lichao Mou,Xiao Xiang Zhu
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:41
摘要

In this paper we tackle a very novel problem, namely height estimation from a single monocular remote sensing image, which is inherently ambiguous, and a technically ill-posed problem, with a large source of uncertainty coming from the overall scale. We propose a fully convolutional-deconvolutional network architecture being trained end-to-end, encompassing residual learning, to model the ambiguous mapping between monocular remote sensing images and height maps. Specifically, it is composed of two parts, i.e., convolutional sub-network and deconvolutional sub-network. The former corresponds to feature extractor that transforms the input remote sensing image to high-level multidimensional feature representation, whereas the latter plays the role of a height generator that produces height map from the feature extracted from the convolutional sub-network. Moreover, to preserve fine edge details of estimated height maps, we introduce a skip connection to the network, which is able to shuttle low-level visual information, e.g., object boundaries and edges, directly across the network. To demonstrate the usefulness of single-view height prediction, we show a practical example of instance segmentation of buildings using estimated height map. This paper, for the first time in the remote sensing community, attempts to estimate height from monocular vision. The proposed network is validated using a large-scale high resolution aerial image data set covered an area of Berlin. Both visual and quantitative analysis of the experimental results demonstrate the effectiveness of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助40
刚刚
西西完成签到,获得积分10
1秒前
QWE发布了新的文献求助10
1秒前
Jian发布了新的文献求助10
1秒前
笨维发布了新的文献求助10
1秒前
1秒前
好多鱼爱学习完成签到 ,获得积分10
1秒前
屈昭阳发布了新的文献求助10
2秒前
baobaoxiong完成签到,获得积分10
2秒前
2秒前
2秒前
蒋若风发布了新的文献求助10
2秒前
3秒前
songyk完成签到,获得积分10
3秒前
zhoumin完成签到,获得积分10
4秒前
4秒前
高高问夏完成签到,获得积分10
5秒前
5秒前
6秒前
jingjing完成签到 ,获得积分10
6秒前
7秒前
君尧发布了新的文献求助10
7秒前
FashionBoy应助王宽宽宽采纳,获得10
7秒前
7秒前
科研通AI6应助王志新采纳,获得10
7秒前
8秒前
魏家乐完成签到,获得积分10
8秒前
wyuwqhjp发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
酷酷怀曼完成签到,获得积分10
9秒前
华仔应助QWE采纳,获得10
9秒前
li发布了新的文献求助10
9秒前
hezhuyou发布了新的文献求助10
9秒前
江山完成签到,获得积分10
9秒前
9秒前
10秒前
斯文败类应助安安采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836