IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network.

计算机科学 人工智能 残余物 卷积神经网络 单眼 计算机视觉 模式识别(心理学) 深度学习
作者
Lichao Mou,Xiao Xiang Zhu
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:41
摘要

In this paper we tackle a very novel problem, namely height estimation from a single monocular remote sensing image, which is inherently ambiguous, and a technically ill-posed problem, with a large source of uncertainty coming from the overall scale. We propose a fully convolutional-deconvolutional network architecture being trained end-to-end, encompassing residual learning, to model the ambiguous mapping between monocular remote sensing images and height maps. Specifically, it is composed of two parts, i.e., convolutional sub-network and deconvolutional sub-network. The former corresponds to feature extractor that transforms the input remote sensing image to high-level multidimensional feature representation, whereas the latter plays the role of a height generator that produces height map from the feature extracted from the convolutional sub-network. Moreover, to preserve fine edge details of estimated height maps, we introduce a skip connection to the network, which is able to shuttle low-level visual information, e.g., object boundaries and edges, directly across the network. To demonstrate the usefulness of single-view height prediction, we show a practical example of instance segmentation of buildings using estimated height map. This paper, for the first time in the remote sensing community, attempts to estimate height from monocular vision. The proposed network is validated using a large-scale high resolution aerial image data set covered an area of Berlin. Both visual and quantitative analysis of the experimental results demonstrate the effectiveness of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小青椒应助kmkz采纳,获得50
刚刚
大胆一刀发布了新的文献求助10
刚刚
野性的听双完成签到 ,获得积分10
1秒前
2秒前
小二郎应助牛马学生采纳,获得10
2秒前
diplomat完成签到,获得积分10
3秒前
么么蛋发布了新的文献求助10
3秒前
所所应助开放幻丝采纳,获得10
3秒前
4秒前
七五完成签到,获得积分10
4秒前
幽默的妍完成签到 ,获得积分10
5秒前
研友_Z3NGvn发布了新的文献求助10
5秒前
在水一方应助么么蛋采纳,获得10
7秒前
seventonight2完成签到,获得积分10
7秒前
完美世界应助谢大喵采纳,获得10
7秒前
Anima应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
等下完这场雨完成签到,获得积分10
9秒前
sran应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
LYB发布了新的文献求助10
9秒前
今后应助科研通管家采纳,获得10
9秒前
浮游应助文艺的问寒采纳,获得10
9秒前
Tourist应助科研通管家采纳,获得10
9秒前
Vency应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
风趣问蕊发布了新的文献求助10
10秒前
12秒前
14秒前
AAA鱼塘建材陈哥完成签到,获得积分10
15秒前
无心发布了新的文献求助10
15秒前
Ava应助天才小张采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309504
求助须知:如何正确求助?哪些是违规求助? 4454082
关于积分的说明 13859234
捐赠科研通 4342002
什么是DOI,文献DOI怎么找? 2384332
邀请新用户注册赠送积分活动 1378790
关于科研通互助平台的介绍 1346889