Formic Acid Synthesis by CO2 Hydrogenation over Single‐Atom Catalysts Based on Ru and Cu Embedded in Graphene

甲酸 石墨烯 催化作用 Atom(片上系统) 吸附 密度泛函理论 活化能 材料科学 金属 过渡金属 光化学 物理化学 化学 无机化学 纳米技术 计算化学 有机化学 计算机科学 嵌入式系统
作者
Dušan Sredojević,Željko Šljivančanin,Edward N. Brothers,Milivoj R. Belić
出处
期刊:ChemistrySelect [Wiley]
卷期号:3 (9): 2631-2637 被引量:35
标识
DOI:10.1002/slct.201702836
摘要

Abstract At variance with conventional heterogeneous catalysts, where only a small number of transition or noble metal atoms at surfaces play the role of active sites, in the single‐atom catalysts (SAC) each metal atom is involved in the catalytic process. Starting from isolated Ru and Cu atoms embedded on defects in graphene, denoted as Ru‐dG and Cu‐dG, we apply density functional theory (DFT) to examine utilizing these structures to catalyze the conversion of CO 2 into the formic acid (FA). Our atomistic modeling of this reaction, highly relevant for reducing the CO 2 level in the atmosphere, includes three different reaction pathways. The first relies on a direct hydrogenation of CO 2 with protons from the H 2 molecule. Due to energy barriers higher than 35 kcal/mol on both Ru‐dG and Cu‐dG, this reaction path does not represent a favorable route for FA synthesis. The other two reaction mechanisms start with the dissociative adsorption of H 2 and then proceed via completely different paths. At Ru‐dG the CO 2 hydrogenation occurs with the H atoms from the dissociated H 2 , while the Cu‐dG favors the proton transfer from an additional H 2 , coadsorbed with CO 2 on hydrogenated SAC. Since we find that these pathways were accompanied with the activation energies smaller than 20 kcal/mol, our DFT study indicates that the Ru adatoms embedded into the defected graphene are promising candidates for designing a SAC enabling an efficient conversion of CO 2 to FA. Since adsorbed H species markedly decrease Cu binding at the vacancy sites, the Cu‐dG is considerably less robust catalyst than Ru‐dG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助谦让的靖巧采纳,获得10
1秒前
玄魁发布了新的文献求助10
2秒前
木子李完成签到,获得积分10
2秒前
6秒前
7秒前
7秒前
oomph完成签到,获得积分10
8秒前
NexusExplorer应助mm采纳,获得10
9秒前
9秒前
koong完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
CodeCraft应助mark采纳,获得10
10秒前
疯狂的大闸蟹完成签到,获得积分10
11秒前
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
yuwen发布了新的文献求助10
11秒前
11秒前
11秒前
ding应助科研通管家采纳,获得30
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
刘丰恺发布了新的文献求助10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
koong发布了新的文献求助10
13秒前
13秒前
英俊的铭应助长情的芝麻采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675220
求助须知:如何正确求助?哪些是违规求助? 4944256
关于积分的说明 15152011
捐赠科研通 4834395
什么是DOI,文献DOI怎么找? 2589462
邀请新用户注册赠送积分活动 1543115
关于科研通互助平台的介绍 1501056