Weakly supervised attention model for RV strain classification from volumetric CTPA scans

计算机科学 人工智能 拉伤 模式识别(心理学) 医学 内科学
作者
Noa Cahan,Edith M. Marom,Shelly Soffer,Yiftach Barash,Eli Konen,Eyal Klang,Hayit Greenspan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:220: 106815-106815 被引量:7
标识
DOI:10.1016/j.cmpb.2022.106815
摘要

Pulmonary embolus (PE) refers to obstruction of pulmonary arteries by blood clots. PE accounts for approximately 100,000 deaths per year in the United States alone. The clinical presentation of PE is often nonspecific, making the diagnosis challenging. Thus, rapid and accurate risk stratification is of paramount importance. High-risk PE is caused by right ventricular (RV) dysfunction from acute pressure overload, which in return can help identify which patients require more aggressive therapy. Reconstructed four-chamber views of the heart on chest CT can detect right ventricular enlargement. CT pulmonary angiography (CTPA) is the golden standard in the diagnostic workup of suspected PE. Therefore, it can link between diagnosis and risk stratification strategies. We developed a weakly supervised deep learning algorithm, with an emphasis on a novel attention mechanism, to automatically classify RV strain on CTPA. Our method is a 3D DenseNet model with integrated 3D residual attention blocks. We evaluated our model on a dataset of CTPAs of emergency department (ED) PE patients. This model achieved an area under the receiver operating characteristic curve (AUC) of 0.88 for classifying RV strain. The model showed a sensitivity of 87% and specificity of 83.7%. Our solution outperforms state-of-the-art 3D CNN networks. The proposed design allows for a fully automated network that can be trained easily in an end-to-end manner without requiring computationally intensive and time-consuming preprocessing or strenuous labeling of the data.We infer that unmarked CTPAs can be used for effective RV strain classification. This could be used as a second reader, alerting for high-risk PE patients. To the best of our knowledge, there are no previous deep learning-based studies that attempted to solve this problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
angel发布了新的文献求助10
1秒前
SciGPT应助高冷的呆呆鱼采纳,获得10
2秒前
Hello应助晚晚采纳,获得10
2秒前
夜已深完成签到,获得积分10
2秒前
2秒前
端庄的白开水完成签到,获得积分10
3秒前
Akim应助鲤鱼寒荷采纳,获得10
3秒前
热心路人应助Lucifer·闪电采纳,获得200
3秒前
3秒前
名天发布了新的文献求助10
3秒前
大方的觅海完成签到,获得积分10
4秒前
大力沛萍发布了新的文献求助20
4秒前
Bismarck发布了新的文献求助10
5秒前
xavier完成签到,获得积分10
5秒前
5秒前
李健应助敏感的小刺猬采纳,获得10
6秒前
科研通AI2S应助papertanchishe采纳,获得10
6秒前
6秒前
6秒前
小张完成签到 ,获得积分10
8秒前
忧伤的帆布鞋完成签到,获得积分10
8秒前
田様应助灰灰采纳,获得10
8秒前
9秒前
SciGPT应助petrichor采纳,获得10
9秒前
10秒前
三金完成签到,获得积分10
10秒前
腿腿完成签到,获得积分10
10秒前
10秒前
脑洞疼应助weww采纳,获得10
11秒前
标致逍遥发布了新的文献求助10
11秒前
angel完成签到,获得积分10
11秒前
11秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
初识应助科研通管家采纳,获得10
13秒前
XIE完成签到,获得积分10
13秒前
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
贰鸟应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3511897
求助须知:如何正确求助?哪些是违规求助? 3094518
关于积分的说明 9223328
捐赠科研通 2789285
什么是DOI,文献DOI怎么找? 1530630
邀请新用户注册赠送积分活动 711020
科研通“疑难数据库(出版商)”最低求助积分说明 706494