弹道
水准点(测量)
计算机科学
运动规划
规划师
一套
采样(信号处理)
离散化
数学优化
碰撞
计算
避碰
机器人
运动(物理)
空格(标点符号)
配置空间
控制理论(社会学)
人工智能
算法
数学
计算机视觉
控制(管理)
操作系统
物理
滤波器(信号处理)
历史
数学分析
量子力学
计算机安全
考古
地理
大地测量学
天文
作者
Gerald Würsching,Matthias Althoff
标识
DOI:10.1109/itsc48978.2021.9564801
摘要
Motion planners for autonomous vehicles must obtain feasible trajectories in real-time regardless of the complexity of traffic conditions. Planning approaches that discretize the search space may perform sufficiently in general driving situations, however, they inherently struggle in critical situations with small solution spaces. To address this problem, we prune the search space of a sampling-based motion planner using reachable sets, i.e., sets of states that the ego vehicle can reach without collision. By only creating samples within the collision-free reachable sets, we can drastically reduce the number of required samples and thus the computation time of the planner to find a feasible trajectory, especially in critical situations. The benefits of our novel concept are demonstrated using scenarios from the CommonRoad benchmark suite.
科研通智能强力驱动
Strongly Powered by AbleSci AI