Unveiling the photoluminescence regulation of colloidal perovskite quantum dots via defect passivation and lattice distortion by potassium cations doping: Not the more the better

光致发光 兴奋剂 钝化 化学 无机化学 量子点 材料科学 光电子学 纳米技术 冶金 图层(电子)
作者
Ya Chu,Chao Wang,Linlin Ma,Xia Feng,Beibei Wang,Yanqing Wu,Yan Jia,Mingshui Zhang,Yan Sun,Haoyue Zhang,G. Zhao
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:596: 199-205 被引量:18
标识
DOI:10.1016/j.jcis.2021.03.128
摘要

In this work, we have first demonstrated that the potassium cation doping effect on photoluminescence (PL) regulation of CH3NH3PbBr3 (CH3NH3+=MA+) colloidal perovskite quantum dots (QDs) is significantly different from the other alkali cation doping effects. The PL intensity will be generally enhanced with the increase doping amounts of other alkali cations. Herein, we have unveiled that the PL of the potassium-doped perovskite QDs is initially prompted by the potassium ions doping and then inhibited with further growing doping amount of the potassium ions. Furthermore, we have also demonstrated that the PL inhibition phenomenon is ascribed as quick trapping of redundant photogenerated electrons by the trap states after huge amount doping besides defect passivation and octahedral structure distortion induced by the initial doping. At the same time, the specific excited state transient absorption and the lifetime of MAxK1-xPbBr3 also confirm that the radiation recombination process is enhanced via defect passivation and lattice distortion, which is induced by moderate potassium cations doping. In addition, the PL of colloidal perovskite quantum dots can be adjusted from orange to cyan within the wavelength range of 300 nm − 600 nm and exhibit better stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助博修采纳,获得10
1秒前
刘哔完成签到,获得积分10
2秒前
汉堡包应助活力明雪采纳,获得10
2秒前
科研通AI2S应助feezy采纳,获得10
5秒前
6秒前
华仔应助liuhui采纳,获得10
7秒前
蛋蛋姐姐完成签到,获得积分10
7秒前
miketyson完成签到,获得积分10
8秒前
美丽的鞋垫完成签到 ,获得积分10
9秒前
10秒前
11秒前
12秒前
橙子发布了新的文献求助10
12秒前
盈盈完成签到,获得积分20
14秒前
利多可欣完成签到,获得积分10
14秒前
鲜橙发布了新的文献求助10
17秒前
平常山柏完成签到 ,获得积分10
19秒前
有魅力白桃完成签到,获得积分10
20秒前
下雪的季节完成签到,获得积分10
21秒前
内向的火车完成签到 ,获得积分10
22秒前
23秒前
24秒前
852应助耶耶采纳,获得10
26秒前
可可151i发布了新的文献求助10
27秒前
mictime完成签到,获得积分10
27秒前
27秒前
29秒前
30秒前
282387287完成签到,获得积分10
32秒前
32秒前
桃宝儿完成签到,获得积分10
32秒前
34秒前
zlq发布了新的文献求助10
34秒前
ksr8888应助浮生采纳,获得10
34秒前
脑洞疼应助easy采纳,获得10
37秒前
38秒前
liuhui发布了新的文献求助10
38秒前
周老八发布了新的文献求助10
39秒前
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312100
求助须知:如何正确求助?哪些是违规求助? 2944743
关于积分的说明 8521216
捐赠科研通 2620426
什么是DOI,文献DOI怎么找? 1432831
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650106