Dual-energy CT-based radiomics nomogram in predicting histological differentiation of head and neck squamous carcinoma: a multicenter study

列线图 医学 头颈部鳞状细胞癌 无线电技术 放射科 头颈部癌 肿瘤科 内科学 放射治疗
作者
Zheng Li,Zhaohui Liu,Yan Guo,Sicong Wang,Xiaoxia Qu,Yajun Li,Yucheng Pan,Long Jiang Zhang,Danke Su,Qian Yang,Xiaofeng Tao,Qiang Yue,Junfang Xian
出处
期刊:Neuroradiology [Springer Nature]
卷期号:64 (2): 361-369 被引量:8
标识
DOI:10.1007/s00234-021-02860-2
摘要

To develop and validate a dual-energy CT (DECT)-based radiomics nomogram from multicenter trials for predicting the histological differentiation of head and neck squamous cell carcinoma (HNSCC).A total of 178 patients (112 in the training and 66 in the validation cohorts) from eight institutions with histologically proven HNSCCs were included in this retrospective study. Radiomics-signature models were constructed from features extracted from virtual monoenergetic images (VMI) and iodine-based material decomposition images (IMDI), reconstructed from venous-phase DECT images. Clinical factors were also assessed to build a clinical model. Multivariate logistic regression analysis was used to develop a nomogram combining the radiomics signature models and clinical model for predicting poorly differentiated HNSCC and moderately well-differentiated HNSCC. The predictive performance of the clinical model, radiomics signature models, and nomogram was compared. The calibration degree of the nomogram was also assessed.The tumor location, VMI-signature, and IMDI-signature were associated with the degree of HNSCC differentiation, and areas under the ROC curves (AUCs) were 0.729, 0.890, and 0.833 in the training cohort and 0.627, 0.859, and 0.843 in the validation cohort, respectively. The nomogram incorporating tumor location and two radiomics-signature models yielded the best performance in training (AUC = 0.987) and validation (AUC = 0.968) cohorts with a good calibration degree.The nomogram that integrated the DECT-based radiomics-signature models and tumor location showed good performance in predicting histological differentiation degree of HNSCC, providing a novel combination for predicting HNSCC differentiation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐亦瑶完成签到,获得积分10
刚刚
洛小洛关注了科研通微信公众号
刚刚
Hello应助初遇之时最暖采纳,获得10
刚刚
舒适亦凝发布了新的文献求助20
1秒前
李浅墨完成签到 ,获得积分10
2秒前
纯洁完成签到,获得积分10
3秒前
橘寄完成签到,获得积分10
5秒前
6秒前
YFW完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
淡然的糖豆完成签到 ,获得积分10
7秒前
7秒前
活力的以寒完成签到 ,获得积分10
7秒前
艾比西地完成签到 ,获得积分10
8秒前
JianYugen完成签到,获得积分10
11秒前
雪饼发布了新的文献求助10
11秒前
12秒前
文盲文案发布了新的文献求助10
12秒前
qazx发布了新的文献求助10
12秒前
12秒前
13秒前
开心绝施完成签到,获得积分10
13秒前
wings发布了新的文献求助10
13秒前
舒心小凡完成签到,获得积分10
14秒前
舒适亦凝完成签到,获得积分10
15秒前
田様应助火星上的听云采纳,获得10
15秒前
我是老大应助我爱学习采纳,获得10
17秒前
杨小羊发布了新的文献求助10
19秒前
QXR完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
所所应助秀丽的千山采纳,获得10
22秒前
嗯哼应助开心绝施采纳,获得20
23秒前
Micahaeler完成签到 ,获得积分10
24秒前
魔芋发布了新的文献求助10
24秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Effect of reactor temperature on FCC yield 1700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
Production Logging: Theoretical and Interpretive Elements 555
电解铜箔实用技术手册 540
Organic Synthesis 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3285289
求助须知:如何正确求助?哪些是违规求助? 2922536
关于积分的说明 8412208
捐赠科研通 2594211
什么是DOI,文献DOI怎么找? 1414367
科研通“疑难数据库(出版商)”最低求助积分说明 658845
邀请新用户注册赠送积分活动 640701