Dual-energy CT-based radiomics nomogram in predicting histological differentiation of head and neck squamous carcinoma: a multicenter study

列线图 医学 头颈部鳞状细胞癌 无线电技术 放射科 头颈部癌 肿瘤科 内科学 放射治疗
作者
Zheng Li,Zhaohui Liu,Yan Guo,Sicong Wang,Xiaoxia Qu,Yajun Li,Yucheng Pan,Long Jiang Zhang,Danke Su,Qian Yang,Xiaofeng Tao,Qiang Yue,Junfang Xian
出处
期刊:Neuroradiology [Springer Science+Business Media]
卷期号:64 (2): 361-369 被引量:8
标识
DOI:10.1007/s00234-021-02860-2
摘要

To develop and validate a dual-energy CT (DECT)-based radiomics nomogram from multicenter trials for predicting the histological differentiation of head and neck squamous cell carcinoma (HNSCC).A total of 178 patients (112 in the training and 66 in the validation cohorts) from eight institutions with histologically proven HNSCCs were included in this retrospective study. Radiomics-signature models were constructed from features extracted from virtual monoenergetic images (VMI) and iodine-based material decomposition images (IMDI), reconstructed from venous-phase DECT images. Clinical factors were also assessed to build a clinical model. Multivariate logistic regression analysis was used to develop a nomogram combining the radiomics signature models and clinical model for predicting poorly differentiated HNSCC and moderately well-differentiated HNSCC. The predictive performance of the clinical model, radiomics signature models, and nomogram was compared. The calibration degree of the nomogram was also assessed.The tumor location, VMI-signature, and IMDI-signature were associated with the degree of HNSCC differentiation, and areas under the ROC curves (AUCs) were 0.729, 0.890, and 0.833 in the training cohort and 0.627, 0.859, and 0.843 in the validation cohort, respectively. The nomogram incorporating tumor location and two radiomics-signature models yielded the best performance in training (AUC = 0.987) and validation (AUC = 0.968) cohorts with a good calibration degree.The nomogram that integrated the DECT-based radiomics-signature models and tumor location showed good performance in predicting histological differentiation degree of HNSCC, providing a novel combination for predicting HNSCC differentiation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yph完成签到,获得积分10
刚刚
houfei发布了新的文献求助10
1秒前
hhhblabla应助梓榆采纳,获得20
2秒前
Sheryl完成签到,获得积分10
3秒前
3秒前
石头发布了新的文献求助10
4秒前
小费发布了新的文献求助50
4秒前
小肥羊完成签到,获得积分10
5秒前
5秒前
5秒前
毛煜完成签到,获得积分10
7秒前
怎么会睡不醒完成签到 ,获得积分10
8秒前
8秒前
8秒前
彩色垣发布了新的文献求助10
8秒前
领导范儿应助王大大采纳,获得10
9秒前
飞天817发布了新的文献求助10
9秒前
笑笑发布了新的文献求助10
9秒前
10秒前
Mobius发布了新的文献求助10
10秒前
11秒前
jachin发布了新的文献求助10
11秒前
外向烤鸡完成签到 ,获得积分10
11秒前
DR发布了新的文献求助10
11秒前
jzw发布了新的文献求助10
12秒前
晨时明月完成签到,获得积分10
12秒前
13秒前
冰忆完成签到,获得积分10
13秒前
cangye发布了新的文献求助10
14秒前
caixiaobinger完成签到 ,获得积分10
14秒前
文艺书雪完成签到 ,获得积分10
14秒前
传奇3应助石头采纳,获得10
14秒前
榕树完成签到,获得积分10
14秒前
14秒前
15秒前
帆帆发布了新的文献求助10
15秒前
15秒前
刘英坤发布了新的文献求助10
16秒前
研友_84WJXZ发布了新的文献求助10
16秒前
yangg发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089