CAN-PINN: A fast physics-informed neural network based on coupled-automatic–numerical differentiation method

自动微分 计算机科学 人工神经网络 应用数学 算法 物理 计算科学 计算 数学 人工智能
作者
Pao‐Hsiung Chiu,Jian Cheng Wong,Chin Chun Ooi,My Ha Dao,Yew-Soon Ong
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:395: 114909-114909 被引量:204
标识
DOI:10.1016/j.cma.2022.114909
摘要

In this study, novel physics-informed neural network (PINN) methods for coupling neighboring support points and their derivative terms which are obtained by automatic differentiation (AD), are proposed to allow efficient training with improved accuracy. The computation of differential operators required for PINNs loss evaluation at collocation points are conventionally obtained via AD. Although AD has the advantage of being able to compute the exact gradients at any point, such PINNs can only achieve high accuracies with large numbers of collocation points, otherwise they are prone to optimizing towards unphysical solution. To make PINN training fast, the dual ideas of using numerical differentiation (ND)-inspired method and coupling it with AD are employed to define the loss function. The ND-based formulation for training loss can strongly link neighboring collocation points to enable efficient training in sparse sample regimes, but its accuracy is restricted by the interpolation scheme. The proposed coupled-automatic-numerical differentiation framework, labeled as can-PINN, unifies the advantages of AD and ND, providing more robust and efficient training than AD-based PINNs, while further improving accuracy by up to 1-2 orders of magnitude relative to ND-based PINNs. For a proof-of-concept demonstration of this can-scheme to fluid dynamic problems, two numerical-inspired instantiations of can-PINN schemes for the convection and pressure gradient terms were derived to solve the incompressible Navier-Stokes (N-S) equations. The superior performance of can-PINNs is demonstrated on several challenging problems, including the flow mixing phenomena, lid driven flow in a cavity, and channel flow over a backward facing step. The results reveal that for challenging problems like these, can-PINNs can consistently achieve very good accuracy whereas conventional AD-based PINNs fail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助小王采纳,获得10
1秒前
英俊的铭应助Joy采纳,获得10
2秒前
小牛马发布了新的文献求助10
4秒前
忘崽子小拳头完成签到,获得积分10
4秒前
Brave发布了新的文献求助10
4秒前
神勇的萱萱完成签到,获得积分10
5秒前
Leoniko完成签到 ,获得积分10
6秒前
隐形曼青应助熊遇蜜采纳,获得10
8秒前
能不落枕么完成签到,获得积分10
9秒前
10秒前
雪雨夜心完成签到,获得积分10
10秒前
踏雪飞鸿完成签到,获得积分10
12秒前
闻巷雨完成签到 ,获得积分10
12秒前
Virtual应助木木采纳,获得10
12秒前
Hello应助能不落枕么采纳,获得10
14秒前
小牛马完成签到,获得积分10
14秒前
小王发布了新的文献求助10
15秒前
淘宝叮咚完成签到,获得积分10
15秒前
充电宝应助ye采纳,获得10
16秒前
17秒前
Shuo应助冰阔罗采纳,获得10
17秒前
可爱的坤完成签到,获得积分10
18秒前
1111完成签到,获得积分10
19秒前
孤独雨梅完成签到,获得积分10
21秒前
21秒前
榴莲姑娘完成签到 ,获得积分10
21秒前
熊遇蜜发布了新的文献求助10
22秒前
沟通亿心完成签到,获得积分10
23秒前
23秒前
25秒前
26秒前
外向的雁玉完成签到,获得积分10
26秒前
Efficient完成签到 ,获得积分10
26秒前
畅快山兰完成签到 ,获得积分10
26秒前
ye发布了新的文献求助10
28秒前
super旵完成签到,获得积分10
29秒前
29秒前
星辰大海应助淼队采纳,获得10
30秒前
magic_sweets完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4529314
求助须知:如何正确求助?哪些是违规求助? 3968213
关于积分的说明 12294898
捐赠科研通 3633838
什么是DOI,文献DOI怎么找? 2000187
邀请新用户注册赠送积分活动 1036377
科研通“疑难数据库(出版商)”最低求助积分说明 926065