已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CAN-PINN: A fast physics-informed neural network based on coupled-automatic–numerical differentiation method

自动微分 计算机科学 人工神经网络 应用数学 算法 物理 计算科学 计算 数学 人工智能
作者
Pao‐Hsiung Chiu,Jian Cheng Wong,Chin Chun Ooi,My Ha Dao,Yew-Soon Ong
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:395: 114909-114909 被引量:171
标识
DOI:10.1016/j.cma.2022.114909
摘要

In this study, novel physics-informed neural network (PINN) methods for coupling neighboring support points and their derivative terms which are obtained by automatic differentiation (AD), are proposed to allow efficient training with improved accuracy. The computation of differential operators required for PINNs loss evaluation at collocation points are conventionally obtained via AD. Although AD has the advantage of being able to compute the exact gradients at any point, such PINNs can only achieve high accuracies with large numbers of collocation points, otherwise they are prone to optimizing towards unphysical solution. To make PINN training fast, the dual ideas of using numerical differentiation (ND)-inspired method and coupling it with AD are employed to define the loss function. The ND-based formulation for training loss can strongly link neighboring collocation points to enable efficient training in sparse sample regimes, but its accuracy is restricted by the interpolation scheme. The proposed coupled-automatic-numerical differentiation framework, labeled as can-PINN, unifies the advantages of AD and ND, providing more robust and efficient training than AD-based PINNs, while further improving accuracy by up to 1-2 orders of magnitude relative to ND-based PINNs. For a proof-of-concept demonstration of this can-scheme to fluid dynamic problems, two numerical-inspired instantiations of can-PINN schemes for the convection and pressure gradient terms were derived to solve the incompressible Navier-Stokes (N-S) equations. The superior performance of can-PINNs is demonstrated on several challenging problems, including the flow mixing phenomena, lid driven flow in a cavity, and channel flow over a backward facing step. The results reveal that for challenging problems like these, can-PINNs can consistently achieve very good accuracy whereas conventional AD-based PINNs fail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的凡梦完成签到 ,获得积分10
刚刚
爆米花应助cyt9999采纳,获得10
1秒前
友好冥王星完成签到 ,获得积分10
1秒前
linmu完成签到 ,获得积分10
1秒前
5秒前
CodeCraft应助kytm采纳,获得10
6秒前
义气严青完成签到,获得积分10
9秒前
10秒前
大方大船完成签到,获得积分10
11秒前
爱吃煎饼果子的芋圆完成签到 ,获得积分10
11秒前
12秒前
不能随便完成签到,获得积分10
14秒前
qqq完成签到 ,获得积分10
15秒前
17秒前
就看最后一篇完成签到 ,获得积分10
23秒前
我爱Chem完成签到 ,获得积分10
23秒前
没有蛀牙发布了新的文献求助10
23秒前
25秒前
大侦探皮卡丘完成签到,获得积分10
27秒前
卿莞尔完成签到 ,获得积分0
27秒前
Steven发布了新的文献求助10
29秒前
明时完成签到,获得积分10
30秒前
李大刚完成签到 ,获得积分10
33秒前
34秒前
35秒前
Vaibhav完成签到,获得积分10
36秒前
天天快乐应助su采纳,获得10
36秒前
仿生人完成签到,获得积分10
37秒前
义气芷蝶完成签到 ,获得积分10
39秒前
结实凌瑶完成签到 ,获得积分10
40秒前
41秒前
光能使者完成签到,获得积分10
42秒前
GGBond完成签到 ,获得积分10
44秒前
Lucas应助科研进化中采纳,获得10
46秒前
kaio_escolar发布了新的文献求助10
46秒前
nolan完成签到 ,获得积分10
50秒前
GXLong完成签到,获得积分10
51秒前
52秒前
su发布了新的文献求助10
55秒前
Akim应助Crystal采纳,获得30
58秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965486
求助须知:如何正确求助?哪些是违规求助? 3510787
关于积分的说明 11155074
捐赠科研通 3245247
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804171