亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CAN-PINN: A fast physics-informed neural network based on coupled-automatic–numerical differentiation method

自动微分 搭配(遥感) 插值(计算机图形学) 计算机科学 人工神经网络 联轴节(管道) 流量(数学) 卷积神经网络 应用数学 算法 数学优化 计算 数学 人工智能 机器学习 几何学 机械工程 运动(物理) 工程类
作者
Pao‐Hsiung Chiu,Jia Haur Wong,Chin Chun Ooi,My Ha Dao,Yew-Soon Ong
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:395: 114909-114909 被引量:91
标识
DOI:10.1016/j.cma.2022.114909
摘要

In this study, novel physics-informed neural network (PINN) methods for coupling neighboring support points and their derivative terms which are obtained by automatic differentiation (AD), are proposed to allow efficient training with improved accuracy. The computation of differential operators required for PINNs loss evaluation at collocation points are conventionally obtained via AD. Although AD has the advantage of being able to compute the exact gradients at any point, such PINNs can only achieve high accuracies with large numbers of collocation points, otherwise they are prone to optimizing towards unphysical solution. To make PINN training fast, the dual ideas of using numerical differentiation (ND)-inspired method and coupling it with AD are employed to define the loss function. The ND-based formulation for training loss can strongly link neighboring collocation points to enable efficient training in sparse sample regimes, but its accuracy is restricted by the interpolation scheme. The proposed coupled-automatic-numerical differentiation framework, labeled as can-PINN, unifies the advantages of AD and ND, providing more robust and efficient training than AD-based PINNs, while further improving accuracy by up to 1-2 orders of magnitude relative to ND-based PINNs. For a proof-of-concept demonstration of this can-scheme to fluid dynamic problems, two numerical-inspired instantiations of can-PINN schemes for the convection and pressure gradient terms were derived to solve the incompressible Navier-Stokes (N-S) equations. The superior performance of can-PINNs is demonstrated on several challenging problems, including the flow mixing phenomena, lid driven flow in a cavity, and channel flow over a backward facing step. The results reveal that for challenging problems like these, can-PINNs can consistently achieve very good accuracy whereas conventional AD-based PINNs fail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧伤的绍辉完成签到 ,获得积分10
5秒前
樱桃猴子应助科研通管家采纳,获得20
30秒前
mpenny77发布了新的文献求助10
40秒前
43秒前
mpenny77完成签到,获得积分10
48秒前
柠檬发布了新的文献求助10
49秒前
Isaac完成签到 ,获得积分10
51秒前
yexu完成签到,获得积分10
1分钟前
研友_ndDGVn完成签到 ,获得积分10
1分钟前
舒心的晟睿完成签到 ,获得积分10
1分钟前
joanna完成签到,获得积分10
1分钟前
2分钟前
2分钟前
xiaogang127完成签到 ,获得积分10
2分钟前
likaixuanzzz完成签到 ,获得积分10
2分钟前
季英兰发布了新的文献求助10
2分钟前
麻辣小牛肉完成签到,获得积分10
2分钟前
黑环刺身完成签到,获得积分10
3分钟前
顾矜应助huang采纳,获得10
3分钟前
SciGPT应助季英兰采纳,获得10
3分钟前
麦尔哈巴完成签到 ,获得积分10
3分钟前
快乐植物完成签到,获得积分10
3分钟前
wbs13521完成签到,获得积分10
4分钟前
4分钟前
樱桃猴子应助科研通管家采纳,获得10
4分钟前
西安浴日光能赵炜完成签到,获得积分10
4分钟前
4分钟前
一月完成签到,获得积分10
5分钟前
5分钟前
nenoaowu完成签到,获得积分10
5分钟前
qazcy发布了新的文献求助30
5分钟前
生动的冰蓝应助liuzr采纳,获得10
5分钟前
qazcy完成签到,获得积分10
6分钟前
6分钟前
liuzr发布了新的文献求助10
6分钟前
lily完成签到 ,获得积分10
7分钟前
无心的怜烟完成签到,获得积分10
7分钟前
风趣的如娆完成签到,获得积分10
7分钟前
aaa发布了新的文献求助10
7分钟前
汉堡包应助Hanna2021采纳,获得10
7分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294504
求助须知:如何正确求助?哪些是违规求助? 2930450
关于积分的说明 8446056
捐赠科研通 2602612
什么是DOI,文献DOI怎么找? 1420680
科研通“疑难数据库(出版商)”最低求助积分说明 660644
邀请新用户注册赠送积分活动 643433