Radiomics for Identification and Prediction in Metastatic Prostate Cancer: A Review of Studies

无线电技术 工作流程 人工智能 计算机科学 医学 深度学习 机器学习 医学物理学 数据库
作者
Jake Kendrick,Roslyn J. Francis,Ghulam Mubashar Hassan,Pejman Rowshanfarzad,Robert Jeraj,Collin Kasisi,Branimir Rusanov,Martin A. Ebert
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11 被引量:25
标识
DOI:10.3389/fonc.2021.771787
摘要

Metastatic Prostate Cancer (mPCa) is associated with a poor patient prognosis. mPCa spreads throughout the body, often to bones, with spatial and temporal variations that make the clinical management of the disease difficult. The evolution of the disease leads to spatial heterogeneity that is extremely difficult to characterise with solid biopsies. Imaging provides the opportunity to quantify disease spread. Advanced image analytics methods, including radiomics, offer the opportunity to characterise heterogeneity beyond what can be achieved with simple assessment. Radiomics analysis has the potential to yield useful quantitative imaging biomarkers that can improve the early detection of mPCa, predict disease progression, assess response, and potentially inform the choice of treatment procedures. Traditional radiomics analysis involves modelling with hand-crafted features designed using significant domain knowledge. On the other hand, artificial intelligence techniques such as deep learning can facilitate end-to-end automated feature extraction and model generation with minimal human intervention. Radiomics models have the potential to become vital pieces in the oncology workflow, however, the current limitations of the field, such as limited reproducibility, are impeding their translation into clinical practice. This review provides an overview of the radiomics methodology, detailing critical aspects affecting the reproducibility of features, and providing examples of how artificial intelligence techniques can be incorporated into the workflow. The current landscape of publications utilising radiomics methods in the assessment and treatment of mPCa are surveyed and reviewed. Associated studies have incorporated information from multiple imaging modalities, including bone scintigraphy, CT, PET with varying tracers, multiparametric MRI together with clinical covariates, spanning the prediction of progression through to overall survival in varying cohorts. The methodological quality of each study is quantified using the radiomics quality score. Multiple deficits were identified, with the lack of prospective design and external validation highlighted as major impediments to clinical translation. These results inform some recommendations for future directions of the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
湖医小朱发布了新的文献求助10
2秒前
lalala完成签到,获得积分10
2秒前
Ray完成签到 ,获得积分10
2秒前
2秒前
2秒前
天天快乐应助橙子采纳,获得10
3秒前
墨易发布了新的文献求助10
4秒前
打打应助沉静的元容采纳,获得10
5秒前
彭于晏应助柠柚萌不萌采纳,获得10
7秒前
8秒前
522完成签到,获得积分10
9秒前
wade2016发布了新的文献求助30
9秒前
12秒前
肖肖潘达完成签到,获得积分10
12秒前
13秒前
打打应助舒心的芙采纳,获得10
13秒前
15秒前
Ysusb完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
王胤发布了新的文献求助10
18秒前
赘婿应助拼搏的芷文采纳,获得10
19秒前
19秒前
19秒前
20秒前
Jasper应助墨易采纳,获得10
21秒前
湖医小朱发布了新的文献求助10
21秒前
22秒前
会飞的扁担完成签到,获得积分10
22秒前
24秒前
24秒前
善良紫安发布了新的文献求助10
24秒前
彭于晏发布了新的文献求助10
25秒前
Agoni发布了新的文献求助10
25秒前
27秒前
暴躁咩完成签到 ,获得积分10
27秒前
传奇3应助善良紫安采纳,获得10
28秒前
茹果发布了新的文献求助10
28秒前
红日阳光发布了新的文献求助10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 820
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748772
求助须知:如何正确求助?哪些是违规求助? 3291802
关于积分的说明 10074525
捐赠科研通 3007545
什么是DOI,文献DOI怎么找? 1651660
邀请新用户注册赠送积分活动 786660
科研通“疑难数据库(出版商)”最低求助积分说明 751801