电解质
材料科学
多孔性
溶解
聚合物
阴极
电化学
化学工程
单体
电极
准固态
聚合
电池(电)
固化(化学)
复合材料
化学
物理化学
工程类
功率(物理)
物理
量子力学
色素敏化染料
作者
Jialiang Yuan,Ran Dong,Yuan Li,Yang Liu,Zhuo Zheng,Yuxia Liu,Yan Sun,Benhe Zhong,Zhenguo Wu,Xiaodong Guo
摘要
Reducing the interfacial resistance between solid electrolytes and electrodes is critical for developing high-energy density solid-state batteries. In the present study, a simple strategy of designing an integrated cathode and solid electrolyte (ICSE) to avoid a contact interface is proposed and successfully fulfilled with the help of UV curving. Firstly, a porous polymer film (PVDF-HFP/PVDF) was formed on the surface of the porous LiFePO4 electrode via PVP dissolution. Secondly, curable monomers, including PEGDA/PETMP/TFEMA, were filled into the porous membrane via infiltration and concentration. Lastly, the ICSE was obtained via curing with ultraviolet light. The as-prepared LiFePO4//ICSE//Li solid battery displays excellent electrochemical performance with a high reversible capacity of 153 mA h g-1 and a capacity of over 140 mA h g-1 was retained after 150 cycles at 0.1C and 25 °C. This ICSE strategy may effectively contribute to the practical application of all-solid-state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI