A Radiomic-based Machine Learning Algorithm to Reliably Differentiate Benign Renal Masses from Renal Cell Carcinoma

医学 肾细胞癌 肾肿块 肾功能 置信区间 接收机工作特性 肾切除术 放射科 内科学 病理
作者
Nima Nassiri,Marissa Maas,Giovanni Cacciamani,Bino Varghese,Darryl Hwang,Xiaomeng Lei,Monish Aron,Mihir Desai,Assad A. Oberai,Steven Cen,Inderbir S. Gill,Vinay Duddalwar
出处
期刊:European urology focus [Elsevier]
卷期号:8 (4): 988-994 被引量:23
标识
DOI:10.1016/j.euf.2021.09.004
摘要

A substantial proportion of patients undergo treatment for renal masses where active surveillance or observation may be more appropriate.To determine whether radiomic-based machine learning platforms can distinguish benign from malignant renal masses.A prospectively maintained single-institutional renal mass registry was queried to identify patients with a computed tomography-proven clinically localized renal mass who underwent partial or radical nephrectomy.Radiomic analysis of preoperative scans was performed. Clinical and radiomic variables of importance were identified through decision tree analysis, which were incorporated into Random Forest and REAL Adaboost predictive models.The primary outcome was the degree of congruity between the virtual diagnosis and final pathology. Subanalyses were performed for small renal masses and patients who had percutaneous renal mass biopsies as part of their workup. Receiver operating characteristic curves were used to evaluate each model's discriminatory function.A total of 684 patients met the selection criteria. Of them, 76% had renal cell carcinoma; 57% had small renal masses, of which 73% were malignant. Predictive modeling differentiated benign pathology from malignant with an area under the curve (AUC) of 0.84 (95% confidence interval [CI] 0.79-0.9). In small renal masses, radiomic analysis yielded a discriminatory AUC of 0.77 (95% CI 0.69-0.85). When negative and nondiagnostic biopsies were supplemented with radiomic analysis, accuracy increased from 83.3% to 93.4%.Radiomic-based predictive modeling may distinguish benign from malignant renal masses. Clinical factors did not substantially improve the diagnostic accuracy of predictive models. Enhanced diagnostic predictability may improve patient selection before surgery and increase the utilization of active surveillance protocols.Not all kidney tumors are cancerous, and some can be watched. We evaluated a new method that uses radiographic features invisible to the naked eye to distinguish benign masses from true cancers and found that it can do so with acceptable accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀白梦完成签到 ,获得积分10
1秒前
glimmen完成签到,获得积分10
1秒前
1秒前
詹姆斯发布了新的文献求助10
1秒前
haimianbaobao完成签到 ,获得积分10
2秒前
脑洞疼应助Xxx采纳,获得10
2秒前
fan_alive完成签到,获得积分10
2秒前
华仔应助小新采纳,获得10
2秒前
gkhsdvkb完成签到,获得积分10
3秒前
粽子完成签到,获得积分10
3秒前
bsusse发布了新的文献求助10
4秒前
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
6秒前
L77发布了新的文献求助10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
于是真的发布了新的文献求助150
6秒前
7秒前
饱满初夏发布了新的文献求助10
8秒前
gkhsdvkb发布了新的文献求助10
8秒前
lihuanmoon完成签到,获得积分10
8秒前
wuwuwu1wu发布了新的文献求助10
9秒前
李爱国应助大门神采纳,获得10
10秒前
10秒前
科研狗完成签到 ,获得积分10
11秒前
彭于晏应助珍珠奶茶采纳,获得10
12秒前
Yuhong给于芋菊的求助进行了留言
12秒前
再见车站发布了新的文献求助10
13秒前
EurekaOvo完成签到,获得积分10
13秒前
科研小菜鸟i完成签到,获得积分10
14秒前
14秒前
15秒前
Ytterbium发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170569
求助须知:如何正确求助?哪些是违规求助? 2821667
关于积分的说明 7935825
捐赠科研通 2482104
什么是DOI,文献DOI怎么找? 1322285
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608