A Radiomic-based Machine Learning Algorithm to Reliably Differentiate Benign Renal Masses from Renal Cell Carcinoma

医学 肾细胞癌 肾肿块 肾功能 置信区间 接收机工作特性 肾切除术 放射科 内科学 病理
作者
Nima Nassiri,Marissa Maas,Giovanni Cacciamani,Bino Varghese,Darryl Hwang,Xiaomeng Lei,Monish Aron,Mihir Desai,Assad A. Oberai,Steven Cen,Inderbir S. Gill,Vinay Duddalwar
出处
期刊:European urology focus [Elsevier BV]
卷期号:8 (4): 988-994 被引量:34
标识
DOI:10.1016/j.euf.2021.09.004
摘要

A substantial proportion of patients undergo treatment for renal masses where active surveillance or observation may be more appropriate.To determine whether radiomic-based machine learning platforms can distinguish benign from malignant renal masses.A prospectively maintained single-institutional renal mass registry was queried to identify patients with a computed tomography-proven clinically localized renal mass who underwent partial or radical nephrectomy.Radiomic analysis of preoperative scans was performed. Clinical and radiomic variables of importance were identified through decision tree analysis, which were incorporated into Random Forest and REAL Adaboost predictive models.The primary outcome was the degree of congruity between the virtual diagnosis and final pathology. Subanalyses were performed for small renal masses and patients who had percutaneous renal mass biopsies as part of their workup. Receiver operating characteristic curves were used to evaluate each model's discriminatory function.A total of 684 patients met the selection criteria. Of them, 76% had renal cell carcinoma; 57% had small renal masses, of which 73% were malignant. Predictive modeling differentiated benign pathology from malignant with an area under the curve (AUC) of 0.84 (95% confidence interval [CI] 0.79-0.9). In small renal masses, radiomic analysis yielded a discriminatory AUC of 0.77 (95% CI 0.69-0.85). When negative and nondiagnostic biopsies were supplemented with radiomic analysis, accuracy increased from 83.3% to 93.4%.Radiomic-based predictive modeling may distinguish benign from malignant renal masses. Clinical factors did not substantially improve the diagnostic accuracy of predictive models. Enhanced diagnostic predictability may improve patient selection before surgery and increase the utilization of active surveillance protocols.Not all kidney tumors are cancerous, and some can be watched. We evaluated a new method that uses radiographic features invisible to the naked eye to distinguish benign masses from true cancers and found that it can do so with acceptable accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laola完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
赵小胖完成签到,获得积分10
2秒前
彭于晏应助宗笑晴采纳,获得10
2秒前
舒服的灵安完成签到 ,获得积分10
3秒前
3秒前
球球发布了新的文献求助10
3秒前
可爱的函函应助泽灵采纳,获得10
3秒前
hony完成签到,获得积分10
4秒前
4秒前
开放凡桃发布了新的文献求助10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
5秒前
陈住气完成签到,获得积分10
5秒前
young应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
失眠呆呆鱼完成签到 ,获得积分10
5秒前
ding应助科研通管家采纳,获得20
5秒前
易小名完成签到 ,获得积分10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
Rondab应助科研通管家采纳,获得30
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得30
5秒前
子车茗应助科研通管家采纳,获得30
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
乔乔兔应助科研通管家采纳,获得20
6秒前
Ryan完成签到,获得积分10
6秒前
我是老大应助Lizhe采纳,获得10
6秒前
Antonio发布了新的文献求助10
6秒前
falling13完成签到,获得积分10
6秒前
xiaowang发布了新的文献求助10
7秒前
Annihilating完成签到,获得积分10
7秒前
cccui完成签到,获得积分10
7秒前
cruise应助浮熙采纳,获得10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016278
求助须知:如何正确求助?哪些是违规求助? 3556388
关于积分的说明 11320934
捐赠科研通 3289218
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887940
科研通“疑难数据库(出版商)”最低求助积分说明 812060