Cuffless blood pressure estimation from PPG signals and its derivatives using deep learning models

光容积图 计算机科学 人工智能 模式识别(心理学) 血压 人工神经网络 心率 深度学习 支持向量机 信号(编程语言) 特征提取 心跳
作者
C El-Hajj,Panayiotis A. Kyriacou
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:70: 102984-
标识
DOI:10.1016/j.bspc.2021.102984
摘要

Abstract Blood pressure (BP) is a direct indicator for hypertension, therefore, continuous and non-invasive BP monitoring is essential for reducing future health complications. Most non-invasive blood pressure monitors use the oscillometric technique, which can be cumbersome and impractical. To address this problem, we explore several features extracted from the Photoplethysmogram (PPG) waveform and its first and second derivatives and employ deep learning recurrent models for non-invasive cuffless estimation for systolic and diastolic BP. In this research, three techniques have been considered including statistical and machine learning techniques for reducing the collinearity and redundancy in the input feature vector. The estimation models consist of a one bidirectional recurrent layer, followed by a series of stacked conventional recurrent layers and an attention layer. All models were evaluated on 942 subjects collected from the MIMIC II dataset. The best performing model (consists of one bidirectional layer followed by several Long Short-Term Memory layers and an attention layer) achieved a mean absolute error, and standard deviation of 4.51 ± 7.81 mmHg for systolic BP (SBP), and 2.6 ± 4.41 mmHg for diastolic BP (DBP). The results show that the deep learning model trained on features extracted from one PPG sensor yield good performance for continuous and cuffless BP monitoring. Additionally, the results fulfil the international standard for cuffless BP estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小苹果完成签到,获得积分10
1秒前
WD完成签到 ,获得积分10
2秒前
3秒前
酷波er应助三和小神采纳,获得10
4秒前
cailiaokexue完成签到,获得积分10
5秒前
大个应助雨落采纳,获得10
5秒前
zz完成签到,获得积分10
7秒前
whq531608发布了新的文献求助30
7秒前
像心跳完成签到 ,获得积分10
8秒前
10秒前
10秒前
12秒前
13秒前
雨落完成签到,获得积分10
13秒前
enli完成签到,获得积分10
14秒前
寒冷晓凡发布了新的文献求助10
15秒前
Akim应助迷路以筠采纳,获得10
17秒前
24秒前
珊珊完成签到 ,获得积分10
27秒前
Shuai发布了新的文献求助10
28秒前
迷路以筠发布了新的文献求助10
29秒前
寒冷晓凡完成签到,获得积分10
31秒前
chenhunhun完成签到,获得积分10
32秒前
tingting完成签到,获得积分10
35秒前
隐形曼青应助冷言采纳,获得10
36秒前
36秒前
任性的梦菲完成签到,获得积分10
37秒前
香蕉觅云应助Kamelia采纳,获得10
37秒前
最好的完成签到,获得积分10
37秒前
37秒前
YAAAO发布了新的文献求助10
38秒前
落竹完成签到,获得积分10
39秒前
css1997完成签到 ,获得积分10
40秒前
zzl发布了新的文献求助10
40秒前
lin关闭了lin文献求助
42秒前
检检边lin完成签到,获得积分10
43秒前
科研小白完成签到 ,获得积分10
43秒前
科目三应助浮名半生采纳,获得10
47秒前
zzl完成签到,获得积分10
48秒前
CipherSage应助科研通管家采纳,获得10
48秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572296
求助须知:如何正确求助?哪些是违规求助? 3142501
关于积分的说明 9448015
捐赠科研通 2843973
什么是DOI,文献DOI怎么找? 1563103
邀请新用户注册赠送积分活动 731630
科研通“疑难数据库(出版商)”最低求助积分说明 718640