Cuffless blood pressure estimation from PPG signals and its derivatives using deep learning models

光容积图 计算机科学 人工智能 模式识别(心理学) 血压 人工神经网络 心率 深度学习 支持向量机 信号(编程语言) 特征提取 心跳
作者
C El-Hajj,Panayiotis A. Kyriacou
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:70: 102984-
标识
DOI:10.1016/j.bspc.2021.102984
摘要

Abstract Blood pressure (BP) is a direct indicator for hypertension, therefore, continuous and non-invasive BP monitoring is essential for reducing future health complications. Most non-invasive blood pressure monitors use the oscillometric technique, which can be cumbersome and impractical. To address this problem, we explore several features extracted from the Photoplethysmogram (PPG) waveform and its first and second derivatives and employ deep learning recurrent models for non-invasive cuffless estimation for systolic and diastolic BP. In this research, three techniques have been considered including statistical and machine learning techniques for reducing the collinearity and redundancy in the input feature vector. The estimation models consist of a one bidirectional recurrent layer, followed by a series of stacked conventional recurrent layers and an attention layer. All models were evaluated on 942 subjects collected from the MIMIC II dataset. The best performing model (consists of one bidirectional layer followed by several Long Short-Term Memory layers and an attention layer) achieved a mean absolute error, and standard deviation of 4.51 ± 7.81 mmHg for systolic BP (SBP), and 2.6 ± 4.41 mmHg for diastolic BP (DBP). The results show that the deep learning model trained on features extracted from one PPG sensor yield good performance for continuous and cuffless BP monitoring. Additionally, the results fulfil the international standard for cuffless BP estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spenley完成签到,获得积分10
刚刚
小二郎应助niekyang采纳,获得10
刚刚
ding应助AlwaysKim采纳,获得10
2秒前
杨冰完成签到,获得积分10
2秒前
Metx完成签到 ,获得积分10
2秒前
善学以致用应助Hiker采纳,获得10
3秒前
Leo完成签到,获得积分20
3秒前
Mr朱发布了新的文献求助10
3秒前
3秒前
kunkun发布了新的文献求助10
4秒前
烟花应助bxg采纳,获得10
4秒前
丫丫发布了新的文献求助10
5秒前
一独白完成签到 ,获得积分10
6秒前
6秒前
8秒前
GOD伟完成签到,获得积分10
9秒前
识途完成签到 ,获得积分10
9秒前
充电宝应助典雅的蜡烛采纳,获得10
10秒前
10秒前
LTY完成签到,获得积分10
10秒前
小铭的男仆完成签到,获得积分20
10秒前
热心的冷松完成签到,获得积分10
11秒前
勤奋的花前茶完成签到,获得积分10
12秒前
大尾巴白完成签到,获得积分10
12秒前
12秒前
12秒前
qq发布了新的文献求助10
13秒前
14秒前
蝈蝈完成签到,获得积分10
15秒前
cmq完成签到 ,获得积分10
15秒前
李健应助¥#¥-11采纳,获得10
16秒前
骤雨时晴完成签到 ,获得积分10
16秒前
16秒前
熠旅完成签到,获得积分10
16秒前
温暖宛筠完成签到,获得积分10
17秒前
爆米花应助HalaMadrid采纳,获得10
17秒前
17秒前
CY03发布了新的文献求助10
18秒前
豌豆发布了新的文献求助10
18秒前
今何在完成签到,获得积分10
18秒前
高分求助中
Comparative Anatomy of the Vertebrates 9th 3000
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571872
求助须知:如何正确求助?哪些是违规求助? 3142287
关于积分的说明 9446687
捐赠科研通 2843683
什么是DOI,文献DOI怎么找? 1562971
邀请新用户注册赠送积分活动 731530
科研通“疑难数据库(出版商)”最低求助积分说明 718557