CT Radiomics for the Prediction of Synchronous Distant Metastasis in Clear Cell Renal Cell Carcinoma

医学 无线电技术 接收机工作特性 置信区间 Lasso(编程语言) 肾细胞癌 多元统计 子群分析 肾透明细胞癌 多元分析 放射科 核医学 肿瘤科 内科学 统计 计算机科学 数学 万维网
作者
Rong Wen,Jing Huang,Ruizhi Gao,Da Wan,Hui Qin,Yuting Peng,Yiqiong Liang,Xin Li,Xinrong Wang,Yun He,Hong Yang
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:45 (5): 696-703 被引量:7
标识
DOI:10.1097/rct.0000000000001211
摘要

Purpose The aim of this study was to construct and verify a computed tomography (CT) radiomics model for preoperative prediction of synchronous distant metastasis (SDM) in clear cell renal cell carcinoma (ccRCC) patients. Methods Overall, 172 patients with ccRCC were enrolled in the present research. Contrast-enhanced CT images were manually sketched, and 2994 quantitative radiomic features were extracted. The radiomic features were then normalized and subjected to hypothesis testing. Least absolute shrinkage and selection operator (LASSO) was applied to dimension reduction, feature selection, and model construction. The performance of the predictive model was validated through analysis of the receiver operating characteristic curve. Multivariate and subgroup analyses were performed to verify the radiomic score as an independent predictor of SDM. Results The patients randomized into a training (n = 104) and a validation (n = 68) cohort in a 6:4 ratio. Through dimension reduction using LASSO regression, 9 radiomic features were used for the construction of the SDM prediction model. The model yielded moderate performance in both the training (area under the curve, 0.89; 95% confidence interval, 0.81–0.97) and the validation cohort (area under the curve, 0.83; 95% confidence interval, 0.69–0.95). Multivariate analysis showed that the CT radiomic signature was an independent risk factor for clinical parameters of ccRCC. Subgroup analysis revealed a significant connection between the SDM and radiomic signature, except for the lower pole of the kidney subgroup. Conclusions The CT-based radiomics model could be used as a noninvasive, personalized approach for SDM prediction in patients with ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坐雨赏花完成签到 ,获得积分10
2秒前
东东呀完成签到,获得积分10
2秒前
飞飞飞完成签到,获得积分10
3秒前
领导范儿应助冷酷的大山采纳,获得10
5秒前
学术牛马完成签到,获得积分10
5秒前
谨慎秋珊完成签到 ,获得积分10
10秒前
喜悦的飞飞完成签到,获得积分10
11秒前
笨笨凡松完成签到,获得积分10
12秒前
周运完成签到 ,获得积分10
14秒前
9202211125完成签到,获得积分10
15秒前
燕子完成签到,获得积分10
16秒前
mingjie完成签到,获得积分10
16秒前
16秒前
熠ttw完成签到,获得积分10
17秒前
orixero应助李哈哈采纳,获得10
18秒前
自由的中蓝完成签到 ,获得积分10
20秒前
20秒前
偷看星星发布了新的文献求助10
20秒前
Zhusy完成签到 ,获得积分10
21秒前
勤劳的小蜜蜂完成签到,获得积分10
25秒前
25秒前
油条完成签到,获得积分10
25秒前
Brian发布了新的文献求助10
26秒前
zyw完成签到 ,获得积分10
29秒前
李哈哈发布了新的文献求助10
31秒前
31秒前
我是老大应助燕子采纳,获得10
31秒前
32秒前
lilylian完成签到,获得积分10
37秒前
38秒前
清欢完成签到,获得积分10
39秒前
WeiPaiHWuFXZ完成签到 ,获得积分10
40秒前
天天天才完成签到,获得积分10
41秒前
浅陌初心完成签到 ,获得积分10
43秒前
orixero应助Brian采纳,获得10
43秒前
lilylian发布了新的文献求助200
44秒前
45秒前
ljy2015完成签到 ,获得积分10
46秒前
52秒前
qiyun发布了新的文献求助10
57秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511056
关于积分的说明 11156089
捐赠科研通 3245497
什么是DOI,文献DOI怎么找? 1793093
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268