Deep connected attention (DCA) ResNet for robust voice pathology detection and classification

计算机科学 残差神经网络 人工智能 模式识别(心理学) 语音识别 深度学习
作者
Huijun Ding,Zixiong Gu,Peng Dai,Zhou Zhou,Lu Wang,Xiaoxiao Wu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:70: 102973-102973 被引量:17
标识
DOI:10.1016/j.bspc.2021.102973
摘要

The automatic diagnosis method based on speech signal analysis is able to realize the detection and classification of pathological voices. It plays an important role in the early diagnosis and auxiliary treatment of voice pathology, which effectively relief the discomfort of patients and reduce the workload of doctors. Therefore, the automatic diagnosis method based on speech signal analysis is of great research value. Meanwhile, high accuracy, high precision and stability are the pursuit goals. In this paper, a novel computer-aided assessment based on speech signal analysis for pathological voice classification (CS-PVC) system is proposed. This model focuses on the areas with large differences between different pathological voices and healthy voices, while ignore the negative impact of insignificant information on the performance of the model. Two databases were used in the experiments, one is the Saarbruecken Voice database (SVD), and the other is the self-built Shenzhen People’s Hospital voice database (SZUPD). The pathological voice detection accuracy of the proposed system on the above two databases are 81.6% and 82.2% respectively. The experimental results show that the proposed framework is not data-dependence. In other words, it has the potential to be universally applicable in medical framework in the future. • A voice-based non-invasive voice disease detection method is proposed. • The MFSC together with its derivatives are used as acoustic features. • A novel Deep connected attention model (DCA-ResNet) is proposed as the classifier. • Prove the generalization of the algorithm on multiple data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fuao完成签到,获得积分10
3秒前
3秒前
上官若男应助aliime采纳,获得10
4秒前
orixero应助BEN采纳,获得10
5秒前
5秒前
小菜菜完成签到,获得积分20
6秒前
彭于晏应助沉默钢笔采纳,获得10
7秒前
顾矜应助脚踏实地呢采纳,获得10
9秒前
10秒前
英姑应助和谐的傲儿采纳,获得10
10秒前
九九九完成签到,获得积分10
10秒前
LEU发布了新的文献求助10
10秒前
ok123完成签到 ,获得积分10
12秒前
12秒前
14秒前
打打应助玥玥采纳,获得10
14秒前
Carina完成签到,获得积分10
14秒前
dxh完成签到,获得积分10
14秒前
宓鲂完成签到,获得积分10
15秒前
Junsir发布了新的文献求助10
16秒前
绘梦完成签到,获得积分10
16秒前
博德曼的头完成签到 ,获得积分10
17秒前
17秒前
科研通AI2S应助samuealndjw采纳,获得10
17秒前
英勇的书包完成签到 ,获得积分20
18秒前
18秒前
恩希玛发布了新的文献求助10
19秒前
樊珩发布了新的文献求助10
19秒前
20秒前
漂亮翎完成签到,获得积分10
20秒前
20秒前
22秒前
22秒前
天天快乐应助器123采纳,获得10
22秒前
一只菜谱完成签到 ,获得积分10
23秒前
Joanna发布了新的文献求助10
23秒前
24秒前
能干的凡完成签到,获得积分10
25秒前
26秒前
丘比特应助Valky采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145145
求助须知:如何正确求助?哪些是违规求助? 2796529
关于积分的说明 7820187
捐赠科研通 2452829
什么是DOI,文献DOI怎么找? 1305278
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449