已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exponential-Size Neighborhoods for the Pickup-and-Delivery Traveling Salesman Problem

旅行商问题 皮卡 旅行购买者问题 计算机科学 元启发式 数学优化 车辆路径问题 2-选项 组合优化 布线(电子设计自动化) 启发式 数学 人工智能 计算机网络 图像(数学)
作者
Toni Pacheco,Rafael Martinelli,Anand Subramanian,Túlio A. M. Toffolo,Thibaut Vidal
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (2): 463-481 被引量:3
标识
DOI:10.1287/trsc.2022.1176
摘要

Neighborhood search is a cornerstone of state-of-the-art traveling salesman and vehicle routing metaheuristics. Whereas neighborhood exploration procedures are well-developed for problems with individual services, their counterparts for one-to-one pickup-and-delivery problems are more scarcely studied. A direct extension of classic neighborhoods is often inefficient or complex because of the necessity of jointly considering service pairs. To circumvent these issues, we introduce major improvements to existing neighborhood searches for the pickup-and-delivery traveling salesman problem and new large neighborhoods. We show that the classic Relocate Pair neighborhood can be fully explored in [Formula: see text] instead of [Formula: see text] time. We adapt the 4-Opt and Balas–Simonetti neighborhoods to consider precedence constraints. Moreover, we introduce an exponential-size neighborhood called 2k-Opt, which includes all solutions generated by multiple nested 2-Opts and can be searched in [Formula: see text] time using dynamic programming. We conduct extensive computational experiments, highlighting the significant contribution of these new neighborhoods and speedup strategies within two classical metaheuristics. Notably, our approach permits us to repeatedly solve small pickup-and-delivery problem instances to optimality or near-optimality within milliseconds, and therefore, it represents a valuable tool for time-critical applications, such as meal delivery or mobility on demand. Funding: This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grants 308528/2018-2, 315361/2020-4, 422470/2021-0], and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro [Grants E-26/202.790/2019, E-26/201.417/2022, E-26/010.002232/2019]. Supplemental Material: The electronic companion is available at https://doi.org/10.1287/trsc.2022.1176 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjwqz发布了新的文献求助10
1秒前
小鱼吐泡泡完成签到 ,获得积分10
4秒前
HJJ发布了新的文献求助60
5秒前
6秒前
7秒前
认真的善斓完成签到 ,获得积分10
12秒前
12秒前
村雨完成签到 ,获得积分10
12秒前
DW发布了新的文献求助10
13秒前
南山荣熙发布了新的文献求助10
16秒前
Bob完成签到,获得积分10
19秒前
19秒前
20秒前
Ricky完成签到,获得积分10
22秒前
悄悄完成签到 ,获得积分10
23秒前
24秒前
积极书双发布了新的文献求助10
25秒前
长于宽完成签到 ,获得积分10
29秒前
34秒前
yawong关注了科研通微信公众号
35秒前
38秒前
柒_l完成签到 ,获得积分10
41秒前
42秒前
47秒前
48秒前
alwry发布了新的文献求助10
49秒前
50秒前
50秒前
52秒前
Owen应助科研通管家采纳,获得10
52秒前
杳鸢应助科研通管家采纳,获得30
52秒前
科研通AI2S应助lvsehx采纳,获得10
52秒前
linzw完成签到,获得积分10
53秒前
天才7完成签到 ,获得积分10
53秒前
54秒前
54秒前
momo发布了新的文献求助10
55秒前
榴莲姑娘完成签到 ,获得积分10
58秒前
yawong发布了新的文献求助10
1分钟前
称心曼安完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158547
求助须知:如何正确求助?哪些是违规求助? 2809652
关于积分的说明 7883366
捐赠科研通 2468389
什么是DOI,文献DOI怎么找? 1314115
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601963