鼻咽癌
上皮-间质转换
转移
癌症研究
生物
癌细胞
重编程
癌症
β氧化
化学
脂肪酸
生物化学
内科学
医学
细胞
遗传学
放射治疗
作者
Jing Quan,Namei Li,Yue Tan,Huiwen Liu,Weihua Liao,Ya Cao,Xiangjian Luo
出处
期刊:Life Sciences
[Elsevier BV]
日期:2022-04-19
卷期号:300: 120558-120558
被引量:15
标识
DOI:10.1016/j.lfs.2022.120558
摘要
Cancer cells frequently undergo metabolic reprogramming, which contributes to tumorigenicity and malignancy. Unlike primary cancers, during the process of invasion and distal dissemination, cancer cells are deficient in ATP due to damaged glucose transport. Cells need to rewire metabolic programs to overcome nutrient and energy crises, maintaining survival and forming metastasis. However, the underlying mechanism has not been well understood. We elucidated the metabolic alteration in TGFβ1-induced epithelial-mesenchymal transition (EMT) and metastasis of nasopharyngeal carcinoma (NPC).Fluorescent Bodipy fatty acid probe, UPLC-MS/MS analysis, β-oxidation assay, cellular ATP and NADPH/NADP measurement, and Oil Red-O staining were performed to evaluate the activation of FAO pathways in the TGFβ1-induced EMT of NPC cells. Three-dimensional (3D) invasion assay and metastatic animal model were applied to assess the invasive and metastatic capacity of NPC cells.Our current findings reveal that PGC1α-mediated FAO promotes TGFβ1-induced EMT and metastasis of NPC cells. Mechanically, TGFβ1 up-regulates AMPKα1 to activate PGC1α, which transcriptionally boosts FAO-associated genes. The metabolic rewiring mediated by PGC1α facilitates EMT, invasion, and metastasis of NPC.The present study aims to establish the mechanistic connection between energy metabolic reprogramming and the aggressive phenotype of NPC. These actions further provide new opportunities for developing of novel therapeutics for NPC by targeting PGC1α/ FAO signaling.
科研通智能强力驱动
Strongly Powered by AbleSci AI